Referències


Referències

1. Luna S. Ictalurus punctatus summary page [base de dades a Internet]. FishBase. [citat 28 Octubre 2016]. Disponible a: http://www.fishbase.org/summary/Ictalurus-punctatus.html

2. Xu Z, Qin Q, Ge J, Pan J, Xu X. Bioinformatic identification and validation of conservative microRNAs in Ictalurus punctatus. Molecular Biology Reports. 2012;39(12):10395-10405.

3. FAO Pesca Ictalurus punctatus [Internet]. Fao.org. 2016 [citat 2 novembre 2016].Disponible a: http://www.fao.org/fishery/culturedspecies/Ictalurus_punctatus/es

4. C.J. Lobb, L.W. Clem. Distinctive subpopulations of catfish serum antibody and immunoglobulin. Mol Immunol, 20 (8) (1983), pp. 811–818

5. F.W. van Ginkel, N.W. Miller, C.J. Lobb, L.W. Clem. Characterization of anti-hapten antibodies generated in vitro by channel catfish peripheral blood lymphocytes. Dev Comp Immunol, 16 (2-3) (1992), pp. 139–151

6. N.W. Miller, L.W. Clem. Temperature-mediated processes in teleost immunity: differential effects of temperature on catfish in vitro antibody responses to thymus-dependent and thymus-independent antigens. Immunol, 133 (5) (1984), pp. 2356–2359

7. A.N. Vallejo, N.W. Miller, L.W. Clem. Phylogeny of immune recognition: processing and presentation of structurally defined proteins in channel catfish immune responses. Dev Immunol, 1 (3) (1991), pp. 137–148

8. F.W. van Ginkel, N.W. Miller, M.A. Cuchens, L.W. Clem. Activation of channel catfish B cells by membrane immunoglobulin cross-linking. Dev Comp Immunol, 18 (2) (1994), pp. 97–107

9. L. Shen, T.B. Stuge, H. Zhou, M. Khayat, K.S. Barker, S.M. Quiniou, et al. Channel catfish cytotoxic cells: a mini-review. Dev Comp Immunol, 26 (2) (2002), pp. 141–149

10. M. Khayat, T.B. Stuge, M. Wilson, E. Bengten, N.W. Miller, L.W. Clem. Thioredoxin acts as a B cell growth factor in channel catfish. J Immunol, 166 (5) (2001), pp. 2937–2943

11. Rayman, M.P., 2012. Selenium and human health. Lancet 379, 1256–1268.

12. Hatfield, D.L., Tsuji, P.A., Carlson, B.A., et al., 2014. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39, 112–120.

13. Hatfield, D.L.; Berry, M.J.; Gladyshev, V.N. Selenium: Its Molecular Biology and Role in Human Health, 3rd ed.; Springer: New York, NY, USA, 2012.

14. Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777.

15. Tsuji PA, Carlson BA, Anderson CB, Seifried HE, Hatfield DL, Howard MT. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice. Nutrients. 2015 Aug 6;7(8):6529-49.

16. Burk, R.F., Hill, K.E., Motley, A.K., 2003. Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J. Nutr. 133, 1517S–1520S.

17. Jurynec, M.J.; Xia, R.; Mackrill, J.J.; Gunther, D.; Crawford, T.; Flanigan, K.M.; Abramson, J.J.; Howard, M.T.; Grunwald, D.J. Selenoprotein n is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc. Natl. Acad. Sci. USA 2008, 105, 12485–12490.

18. Marino, M.; Stoilova, T.; Giorgi, C.; Bachi, A.; Cattaneo, A.; Auricchio, A.; Pinton, P.; Zito, E. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum. Mol. Genet. 2015, 24, 1843–1855.

19. Shchedrina, V.A.; Zhang, Y.; Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid. Redox Signal. 2010, 12, 839–849.

20. Burk, R.F.; Hill, K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta 2009, 1790, 1441–1447.

21. Xu, X.M.; Carlson, B.A.; Mix, H.; Zhang, Y.; Saira, K.; Glass, R.S.; Berry, M.J.; Gladyshev, V.N.; Hatfield, D.L. Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol. 2007, 5, e4.

22. Kurokawa S, Berry MJ. Selenium. Role of the Essential Metalloid in Health. Met Ions Life Sci.2013;13: 499–534.

23. Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases.Metallomics.2015;7:1213-1228.

24. Metanis NHilvert D. Natural and synthetic selenoproteins. Current Opinion in Chemical Biology. 2014;22:27-34.

25. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013 Apr 25;496(7446):498-503.

26. Reeves MA, Bellinger FP, Berry MJ. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal. 2010 Apr 1;12(7): 809 - 18

27. Novoselov SV, Hua D, Lobanov AV, Gladyshev VN. Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family. Biochem J 394: 575–579, 2006

28. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN. Composition and evolution of the vertebrate and mammalian selenoproteomes. PloS One. 2012; 7 (3): e33066

29. Flohé L and Brigelius-Flohé R. Selenoproteins of the Gluthione Peroxidase Family. Springer. 2012; 167-180.

30. Cisneros Prego E. La glutatión reductasa y su importancia biomédica. Rev Cubana Invest Bioméd. 1995; 14(1).

31. Bianco AC, Larsen PR. Selenium, deiodinases and endocrine function. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium: Its molecular biology and role in human health. Springer; 2006. pp. 207–219.

32. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One. 2012;7(3):e33066.

33. Picot CR, Perichon M, Cintrat JC, Friguet B, Petropoulos I. The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett. 2004 Jan 30;558(1-3):74-8.

34. Panee J, Stoytcheva ZR, Liu W, Berry MJ. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 282: 23759–23765, 2007

35. Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 282: 11960–11968, 2007

36. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN.Characterization of mammalian selenoproteomes. Science 300: 1439–1443, 2003

37. Labunskyy V, Hatfield D, Gladyshev V. Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews. 2014;94(3):739-777.

38. Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN. Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem 286: 42937–42948, 2011

39. Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, Guicheney P.Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern.Hum Mol Genet 12: 1045–1053, 2003

40. Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A. Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res 313: 156–167, 2007

41. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci USA 105: 12485–12490, 2008

42. Repetida, the same: Labunskyy V, Hatfield D, Gladyshev V. Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews. 2014;94(3):739-777.

43. Dudkiewicz M, Szczepinska T, Grynberg M, Pawlowski K. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life. PloS One 7: e32138, 2012

44. Richardson DR. More roles for selenoprotein P: local selenium storage and recycling protein in the brain. Biochem J 386: e5–e7, 2005

45. Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köhrle J, Schomburg L. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J 386: 221–6, 2005

46. Benner M, Settles M, Murdoch G, Hardy R, Robison B. Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation. Physiological Genomics. 2013;45(15):653-666.

47. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol Rev [Internet]. 2014;94(3):739–77

48. Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN: Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 2002, 21:3681–3693

49. Castellano S, Novoselov SV, Kryukov GV, Lescure A, Blanco E, Krol A, Gladyshev VN, Guigo R: Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO Rep 2004, 5:71–77

50. Jiang L, Ni J, Liu Q. Evolution of selenoproteins in the metazoan. BMC Genomics. 2012;13(1):446.

51. Jeon Y, Park Y, Lee J, Hong J, Kim I. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2014;1843(7):1356-1364.

52. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One. 2012;7(3).

53. Whanger PD. Selenoprotein expression and function-selenoprotein W. Biochim Biophys Acta. 2009 Nov;1790(11)

54. Xu X, Carlson B, Mix H, Zhang Y, Saira K, Glass R, Berry M, Gladyshev V, Hatfield D. 2007a. Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol 5: e4.

55. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007;8(9)

56. Romero H, Zhang Y, Gladyshev VN, Salinas G. 2005. Evolution of selenium utilization traits. Genome Biol 6: R66.

57. Chiba S, Itoh Y, Sekine S, Yokoyama S. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Mol Cell. 2010 Aug 13;39(3):410-20

58. Ganichkin OM, Xu XM, Carlson BA, Mix H, Hatfield DL, Gladyshev VN, Wahl MC. Structure and catalytic mechanism of eukaryotic selenocysteine synthase. J Biol Chem. 2008 Feb 29;283(9):5849-65

59. Puppala A, French R, Matthies D, Baxa U, Subramaniam S, Simonović M. Structural basis for early-onset neurological disorders caused by mutations in human selenocysteine synthase. Scientific Reports. 2016;6:32563.

60. Fagegaltier, D. et al. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.EMBO J. 19, 4796–4805 (2000).

61. Forchhammer, K., Leinfelder, W. & Böck, A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453–456 (1989).

62. Dobosz-Bartoszek M, Pinkerton MH, Otwinowski Z, Chakravarthy S, Söll D, Copeland PR, Simonović M. Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation. Nat Commun. 2016 Oct 6;7:12941