1. Small-Howard AL, Berry MJ. Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes. Biochem Soc Trans. 2005;33:1493–1497.
2. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014; 94(3):739-77.
3. Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2009;422(1):11-22.
4. Forstrom JW, Zakowski JJ, Tappel AL. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978;17:2639–2644.
5. Chambers I, Frampton J, Goldfarb P, Affara N, McBain W, Harrison PR. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA. EMBO J. 1986;5:1221–1227.
6. Berry MJ, Banu L, Harney JW, Larsen PR. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 1993;12:3315–3322.
7. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007;8(9):R198.
8. Mariotti M, Ridge P, Zhang Y, Lobanov A, Pringle T, Guigo R et al. Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS ONE. 2012;7(3):e33066.
9. Labunskyy V, Hatfield D, Gladyshev V. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol Rev. 2014;94(3):739-777.
10. Arnér E. Selenoproteins—What unique properties can arise with selenocysteine in place of cysteine?. Exp Cell Res. 2010;316(8):1296-1303.
11. Dong W, Macaulay L, Kwok K, Hinton D, Stapleton H. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: A tool for examining OH-BDE toxicity to early life stages. Aquat Toxicol. 2013;132-133:190-199.
12. Köhrle J. The deiodinase family: selenoenzymes regulating thyroid hormone availability and action. Cell Mol Life Sci. 2000;57(13):1853-1863.
13. Darras V, Van Herck S. Iodothyronine deiodinase structure and function: from ascidians to humans. J Endocrinol. 2012;215(2):189-206.
14. Toppo S, Vanin S, Bosello V, Tosatto S. Evolutionary and Structural Insights Into the Multifaceted Glutathione Peroxidase (Gpx) Superfamily. Antioxid Redox Signal. 2008;10(9):1501-1514.
15. Lubos E, Loscalzo J, Handy D. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid Redox Signal. 2011;15(7):1957-1997.
16. Kryukov G, Kryukov V, Gladyshev V. New Mammalian Selenocysteine-containing Proteins Identified with an Algorithm That Searches for Selenocysteine Insertion Sequence Elements. J Biol Chem. 1999;274(48):33888-33897.
17. Lescure A, Gautheret D, Carbon P, Krol A. Novel Selenoproteins Identifiedin Silicoandin Vivoby Using a Conserved RNA Structural Motif. J Biol Chem. 1999;274(53):38147-38154.
18. Labunskyy V, Hatfield D, Gladyshev V. The Sep15 protein family: Roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life. 2007;59(1):1-5.
19. Novoselov S, Hua D, Lobanov A, Gladyshev V. Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family. Biochem J. 2006;394(3):575-579.
20. Cox A, Tsomides A, Kim A, Saunders D, Hwang K, Evason K et al. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci USA. 2016;113(38):E5562-E5571.
21. Thisse C, Degrave A, Kryukov G, Gladyshev V, Obrecht-Pflumio S, Krol A et al. Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in zebrafish. Gene Expr Patterns. 2003;3(4):525-532.
22. Elkon R, Milon B, Morrison L, Shah M, Vijayakumar S, Racherla M et al. RFX transcription factors are essential for hearing in mice. Nat Commun. 2015;6(1); 8549.
23. Castellano S, Lobanov A, Chapple C, Novoselov S, Albrecht M, Hua D et al. Diversity and functional plasticity of eukaryotic selenoproteins: Identification and characterization of the SelJ family. Procs of the Natl Acad Sci. 2005;102(45):16188-16193.
24. Gaudet P, Livstone M, Lewis S, Thomas P. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform. 2011;12(5):449-462.
25. Gladyshev VN,, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, et al. Selenoprotein Gene Nomenclature. .J Biol Chem. 2016 Nov 11;291(46):24036-24040.
26. Penglase S, Hamre K, Ellingsen S. Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury. Free Radic Biol Med. 2014;75:95-104.
27. Jurynec M, Xia R, Mackrill J, Gunther D, Crawford T, Flanigan K et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci USA. 2008;105(34):12485-12490.
28. Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A. Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res. 2007;313(1):156-167.
29. Han S, Lee B, Yim S, Gladyshev V, Lee S. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein. PLoS ONE. 2014;9(4):e95518.
30. Shetty S, Marsicano J, Copeland P. Uptake and Utilization of Selenium from Selenoprotein P. Biol Trace Elem Res. 2017;181(1):54-61.
31. Tujebajeva R, Ransom D, Harney J, Berry M. Expression and characterization of nonmammalian selenoprotein P in the zebrafish, Danio rerio. Genes Cells. 2000;5(11):897-903.
32. Kryukov G. Characterization of Mammalian Selenoproteomes. Science. 2003;300(5624):1439-1443.
33. Boukhzar L, Hamieh A, Cartier D, Tanguy Y, Alsharif I, Castex M et al. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease. Antioxid Redox Signal. 2016;24(11):557-574.
34. Dikiy A, Novoselov S, Fomenko D, Sengupta A, Carlson B, Cerny R et al. SelT, SelW, SelH, and Rdx12: Genomics and Molecular Insights into the Functions of Selenoproteins of a Novel Thioredoxin-like Family. Biochemistry. 2007;46(23):6871-6882.
35. Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17(1).
36. Na J, Jung J, Bang J, Lu Q, Carlson B, Guo X et al. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med. 2018;127:190-197.
37. Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989; 264(17):9724-7.
38. Xu X, Carlson B, Mix H, Zhang Y, Saira K, Glass R et al. Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes. PLoS Biol. 2006;5(1):e4.
39. Xu X, Mix H, Carlson B, Grabowski P, Gladyshev V, Berry M et al. Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery. J Biol Chem. 2005;280(50):41568-41575.
40. FishBase. (2018). Helostoma temminckii summary page. [online] Available at: https://www.fishbase.de/Summary/SpeciesSummary.php?ID=500&AT=kissing+gourami [Accessed 1 Dec. 2018].
41. Nelson, J., Grande, T. and Wilson, M. Fishes of the world. Hoboken, 2016; New Jersey: Wiley, p.523.
42. Ferry, L., Konow, N. and Gibb, A. Are Kissing Gourami Specialized for Substrate-Feeding? Prey Capture Kinematics of Helostoma temminckii and Other Anabantoid Fishes. 2012; JEZ-A, 317(9), pp.571-579.
43. Seriously Fish. (2018). Helostoma temminkii (Kissing Gourami). [online] Available at: http://www.seriouslyfish.com/species/helostoma-temminkii/ [Accessed 1 Dec. 2018].
44. Sousa, W. and Severi, W. Desenvolvimento larval inicial de Helostoma temminckii Cuvier & Valenciennes (Helostomatidae, Perciformes). Rev Bras Zool, 2000; 17(3), pp.637-644.
45. Courtenay, W., Sahlman, H., Miley, W. and Herrema, D. Exotic fishes in fresh and brackish waters of Florida. 1974; Biol Cons, 6(4), pp.292-302.
46. Sankoff D, Zheng C, Zhu Q. The collapse of gene complement following whole genome duplication. BMC Genomics. 2010;11:313.