REFERENCES

[1] Allmang C, Krol A. Selenoprotein synthesis: UGA does not end the story. Biochimie. 2006;88(11):1561-71.

[2] Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, et al. Selenocysteine: the 21st amino acid. Mol Microbiol. 1991;5(3):515-20.

[3] Allmang C, Wurth L, Krol A. The selenium to selenoprotein pathway in eukaryotes: More molecular partners than anticipated. Biochim Biophys Acta - Gen Subj. Elsevier B.V.; 2009;1790(11):1415-23.

[4] Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Mansell JB, Harney JW, et al. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol. 2006;26(6):2337-46.

[5] Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, et al. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature. 1991;353(6341):273-6.

[6] Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 2000;19(2):306-14.

[7] Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 2000;19(17):4796-805.

[8] Mariotti M, Santesmasses D, Capella-Gutierrez S, Mateo A, Arnan C, Johnson R, et al. Evolution of selenophosphate synthetases: Emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Res. 2015;25(9):1256-67.

[9] Mariotti M, Lobanov A V., Manta B, Santesmasses D, Bofill A, Guigo R, et al. Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Mol Biol Evol. 2016;33(9):2441-53.

[10] Lobanov A V, Hatfield DL, Gladyshev VN. Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta. 2009;1790(11):1424-8.

[11] Mariotti M, Ridge PG, Zhang Y, Lobanov A V., Pringle TH, Guigo R, et al. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One. 2012;7(3):e33066.

[12] Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc Chem Res. 2010;43(11):1408-19.

[13] Beckett GJ, Arthur JR. Selenium and endocrine systems. J Endocrinol. 2005;184(3):455-65.

[14] Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723-7.

[15] Bellinger FP, Raman AV., Reeves MA., Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2010;422(1):11-22.

[16] Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705-43.

[17] Carlson BA, Yoo M-H, Sano Y, Sengupta A, Kim JY, Irons R, et al. Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression. BMC Immunol. 2009;10:57.

[18] Palomo LJ, Justo ER, Vargas JM. Mus spretus (Rodentia: Muridae). Mamm species. 2009;840(840):1-10.

[19] Chevret P, Veyrunes F, Britton-davidian J. The genus Mus as a model for evolutionary studies Molecular phylogeny of the genus Mus (Rodentia: Murinae ) based on mitochondrial and nuclear data. Biol J Linn Soc. 2005;84:417-27.

[20] Moskovitz J. Methionine sulfoxide reductases: Ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta - Proteins Proteomics. 2005;1703(2):213-9.

[21] Lee BC, Dikiy A, Kim H-Y, Gladyshev VN. Functions and Evolution of Selenoprotein Methionine Sulfoxide Reductases. Biochim Biophys Acta. 2009;1790(11):1471-7.

[22] Kasaikina M V., Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, et al. Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem. 2011;286(38):33203-12.

[23] Wu RTY, Cao L, Chen BPC, Cheng WH. Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation. J Biol Chem. 2014;289(49):34378-88.

[24] Cox AG, Tsomides A, Kim AJ, Saunders D, Hwang KL, Evason KJ, et al. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci. 2016;113(38):E5562-71.

[25] Horibata Y, Hirabayashi Y. Identification and characterization of human ethanolaminephosphotransferase1. J Lipid Res. 2007;48(3):503-8.

[26] Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN. Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem. 2011;286(50):42937-48.

[27] Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, et al. Leucine-tRNA Initiates at CUG Start Codons for Protein Synthesis and Presentation by MHC Class I. Science. 2012;336(6089):1719-23.

[28] Reeves MA, Bellinger FP, Berry MJ. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal. 2010;12(7):809-18.

[29] Castets P, Maugenre S, Gartioux C, Rederstorff M, Krol A, Lescure A, et al. Selenoprotein N is dynamically expressed during mouse development and detected early in muscle precursors. BMC Dev Biol. 2009;9:46.

[30] Han SJ, Lee BC, Yim SH, Gladyshev VN, Lee SR. Characterization of mammalian selenoprotein O: A redox-active mitochondrial protein. PLoS One. 2014;9(4):e95518.

[31] Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, et al. Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem. 2003;278(16):13640-6.

[32] Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci. 2009;66(15):2457-78.

[33] Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal. 2010;12(7):839-49.

[34] Sengupta A, Carlson BA, Labunskyy VM, Gladyshev VN and Hatfield DL. Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem Cell Biol. 2012;87(6):953-61.

[35] Jiang YY, Huang JQ, Lin GC, Guo HY, Ren FZ, Zhang H. Characterization and expression of chicken selenoprotein U. Biol Trace Elem Res. 2015;166(2):216-24.

[36] Castellano S, Novoselov SV, Kryukov GV, Lescure A, Blanco E, Krol A, et al. Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO Rep. 2004;5:71-7.

[37] Kryukov G V. Characterization of Mammalian Selenoproteomes. Science. 2003;300(5624):1439-43.

[38] Varlamova EG, Novoselov SV, Novoselov VI. cDNA cloning and the expression and determination of substrate specificity of mice selenocysteine-containing protein SelV (Selenoprotein V). Mol Biol. 2015;49(5):700-4.

[39] Liu W, Yao H, Zhao W, Shi Y, Zhang Z, Xu S. Selenoprotein W was Correlated with the Protective Effect of Selenium on Chicken Myocardial Cells from Oxidative Damage. Biol Trace Elem Res. Biological Trace Element Research; 2016;171(2):419-26.

[40] Xu X-M, Carlson B a, Irons R, Mix H, Zhong N, Gladyshev VN, et al. Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J. 2007;404(1):115-20.

[41] Turanov AA., Xu X-M, Carlson BA, Yoo M-H, Gladyshev VN, Hatfield DL. Biosynthesis of Selenocysteine, the 21st Amino Acid in the Genetic Code, and a Novel Pathway for Cysteine Biosynthesis. Adv Nutr. 2011;2(2):122-8.

[42] Schmidt RL, Simonović M. Synthesis and decoding of selenocysteine and human health. Croat Med J. 2012;53(6):535-50.

[43] Kossinova O, Malygin A, Krol A, Karpova G. The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA. RNA. 2014;20(7):1046-56.

[44] Dubey A, Copeland PR. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation. PLoS One. 2016;11(11):e0165642.