References

Check out our

Consulted bibliography

  • Arnér, E. and Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 267(20), pp.6102-6109.
  • Burk, R. and Hill, K. (2005). SELENOPROTEIN P: An Extracellular Protein with Unique Physical Characteristics and a Role in Selenium Homeostasis. Annual Review of Nutrition, 25(1), pp.215-235
  • Burk, R., Hill, K., Read, R. and Bellew, T. (1991). Response of rat selenoprotein P to selenium administration and fate of its selenium. American Journal of Physiology-Endocrinology and Metabolism, 261(1), pp.26-30.
  • Castellano, S., Andres, A., Bosch, E., Bayes, M., Guigo, R. and Clark, A. (2009). Low Exchangeability of Selenocysteine, the 21st Amino Acid, in Vertebrate Proteins. Molecular Biology and Evolution, 26(9), pp.2031-2040.
  • Copeland, P., Fletcher, J., Carlson, B., Hatfield, D. and Driscoll, D. (2000). A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. The EMBO Journal, 19(2), pp.306-314.
  • Cox, A., Tsomides, A., Kim, A., Saunders, D., Hwang, K., Evason, K., Heidel, J., Brown, K., Yuan, M., Lien, E., Lee, B., Nissim, S., Dickinson, B., Chhangawala, S., Chang, C., Asara, J., Houvras, Y., Gladyshev, V. and Goessling, W. (2016). Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proceedings of the National Academy of Sciences, 113(38), pp.E5562-E5571.
  • Fath, M., Ahmad, I., Smith, C., Spence, J. and Spitz, D. (2011). Enhancement of Carboplatin-Mediated Lung Cancer Cell Killing by Simultaneous Disruption of Glutathione and Thioredoxin Metabolism. Clinical Cancer Research, 17(19), pp.6206-6217.
  • Guimaraes, M., Peterson, D., Vicari, A., Cocks, B., Copeland, N., Gilbert, D., Jenkins, N., Ferrick, D., Kastelein, R., Bazan, J. and Zlotnik, A. (1996). Identification of a novel selD homolog from Eukaryotes, Bacteria, and Archaea: Is there an autoregulatory mechanism in selenocysteine metabolism?. Proceedings of the National Academy of Sciences, 93(26), pp.15086-15091.
  • Howard, M., Carlson, B., Anderson, C. and Hatfield, D. (2013). Translational Redefinition of UGA Codons Is Regulated by Selenium Availability. Journal of Biological Chemistry, 288(27), pp.19401-19413.
  • Jiang, L., Ni, J. and Liu, Q. (2012). Evolution of selenoproteins in the metazoan. BMC Genomics, 13(1), p.446.
  • Kim, I., Guimaraes, M., Zlotnik, A., Bazan, J. and Stadtman, T. (1997). Fetal mouse selenophosphate synthetase 2 (SPS2): Characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Proceedings of the National Academy of Sciences, 94(2), pp.418-421.
  • Labunskyy, V., Hatfield, D. and Gladyshev, V. (2014). Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews, 94(3), pp.739-777.
  • Lee, B., Le, D. and Gladyshev, V. (2008). Mammals Reduce Methionine-S-sulfoxide with MsrA and Are Unable to Reduce Methionine-R-sulfoxide, and This Function Can Be Restored with a Yeast Reductase. Journal of Biological Chemistry, 283(42), pp.28361-28369.
  • Mariotti, M., Ridge, P., Zhang, Y., Lobanov, A., Pringle, T., Guigo, R., Hatfield, D. and Gladyshev, V. (2012). Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS ONE, 7(3), p.e33066.
  • Papp, L., Lu, J., Striebel, F., Kennedy, D., Holmgren, A. and Khanna, K. (2006). The Redox State of SECIS Binding Protein 2 Controls Its Localization and Selenocysteine Incorporation Function. Molecular and Cellular Biology, 26(13), pp.4895-4910.
  • Sattar, H., Yang, J., Zhao, X., Cai, J., Liu, Q., Ishfaq, M., Yang, Z., Chen, M., Zhang, Z. and Xu, S. (2018). Selenoprotein-U (SelU) knockdown triggers autophagy through PI3K–Akt–mTOR pathway inhibition in rooster Sertoli cells. Metallomics, 10(7), pp.929-940.
  • Shim, M., Kim, J., Jung, H., Lee, K., Xu, X., Carlson, B., Kim, K., Kim, I., Hatfield, D. and Lee, B. (2009). Elevation of Glutamine Level by Selenophosphate Synthetase 1 Knockdown Induces Megamitochondrial Formation in Drosophila Cells. Journal of Biological Chemistry, 284(47), pp.32881-32894.
  • Tobe R, Mihara H, Kurihara T, Esaki N. (2009). Identification of Proteins Interacting with Selenocysteine Lyase. Bioscience, Biotechnology, and Biochemistry, 73(5), pp.1230-1232.
  • Tujebajeva, R., Copeland, P., Xu, X., Carlson, B., Harney, J., Driscoll, D., Hatfield, D. and Berry, M. (2000). Decoding apparatus for eukaryotic selenocysteine insertion. EMBO reports, 1(2), pp.158-163.
  • Xu, X., Carlson, B., Irons, R., Mix, H., Zhong, N., Gladyshev, V. and Hatfield, D. (2007). Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochemical Journal, 404(1), pp.115-120.
  • Xu, X., Mix, H., Carlson, B., Grabowski, P., Gladyshev, V., Berry, M. and Hatfield, D. (2005). Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery. Journal of Biological Chemistry, 280(50), pp.41568-41575.