References

[1]Brown, K. and Arthur, J. (2001). Selenium, selenoproteins and human health: a review. Public Health Nutrition, 4(2b).

[2]Steinbrenner, H., Speckmann, B. and Klotz, L. (2016). Selenoproteins: Antioxidant selenoenzymes and beyond. Archives of Biochemistry and Biophysics, 595, pp.113-119.

[3]Penglase, S., Hamre, K. and Ellingsen, S. (2014). Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury. Free Radical Biology and Medicine, 75, pp.95-104.

[4]Castellano, S., Novoselov, S., Kryukov, G., Lescure, A., Blanco, E., Krol, A., Gladyshev, V. and Guigó, R. (2004). Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO reports, 5(1), pp.71-77.

[5]Papp, L., Lu, J., Holmgren, A. and Khanna, K. (2007). From Selenium to Selenoproteins: Synthesis, Identity, and Their Role in Human Health. Antioxidants & Redox Signaling, 9(7), pp.775-806.

[6]Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Malevu, T., Sochor, J., Baron, M., Melcova, M., Zidkova, J. and Kizek, R. (2017). A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species. A Critical Review. International Journal of Molecular Sciences, 18(10), p.2209.

[7]Wrobel, J., Power, R. and Toborek, M. (2015). Biological activity of selenium: Revisited. IUBMB Life, 68(2), pp.97-105.

[8]Zhu, S., Li, X., Sun, X., Lin, J., Li, W., Zhang, C. and Li, J. (2017). Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure–function relationships and interactions of binding molecules. Metallomics, 9(2), pp.124-131.

[9]Mousa, R., Notis?Dardashti, R. and Metanis, N. (2017). Selenium and Selenocysteine in Protein Chemistry. Angewandte Chemie International Edition.

[10]Squires, J. and Berry, M. (2008). Eukaryotic selenoprotein synthesis: Mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life, 60(4), pp.232-235.

[11]Wilting, R., Schorling, S., Persson, B. and Böck, A. (1997). Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. Journal of Molecular Biology, 266(4), pp.637-641.

[12]Yakubov, E., Buchfelder, M., Eyüpoglu, I. and Savaskan, N. (2014). Selenium Action in Neuro-Oncology. Biological Trace Element Research, 161(3), pp.246-254.

[13]Labunskyy, V., Hatfield, D. and Gladyshev, V. (2014). Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews, 94(3), pp.739-777.

[14]Li, B., Li, D., Jing, W., Fan, J., Dahms, H., Lee, S. and Wang, L. (2017). Biogenic selenium and its hepatoprotective activity. Scientific Reports, 7(1).

[15]Morgan, B., Ezeri?a, D., Amoako, T., Riemer, J., Seedorf, M. and Dick, T. (2012). Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nature Chemical Biology, 9(2), pp.119-125.

[16]Novoselov, S., Kryukov, G., Xu, X., Carlson, B., Hatfield, D. and Gladyshev, V. (2007). Selenoprotein H Is a Nucleolar Thioredoxin-like Protein with a Unique Expression Pattern. Journal of Biological Chemistry, 282(16), pp.11960-11968.

[17]Mariotti, M., Ridge, P., Zhang, Y., Lobanov, A., Pringle, T., Guigo, R., Hatfield, D. and Gladyshev, V. (2012). Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS ONE, 7(3), p.e33066.

[18]Varlamova, E., Goltyaev, M., Novoselov, V. and Fesenko, E. (2017). Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines. Doklady Biochemistry and Biophysics, 476(1), pp.320-322.

[19]Jiang, Y., Huang, J., Lin, G., Guo, H., Ren, F. and Zhang, H. (2015). Characterization and Expression of Chicken Selenoprotein U. Biological Trace Element Research, 166(2), pp.216-224.

[20]Shchedrina V, Everley R, Zhang Y, Gygi S, Hatfield D, Gladyshev V. Selenoprotein K Binds Multiprotein Complexes and Is Involved in the Regulation of Endoplasmic Reticulum Homeostasis. Journal of Biological Chemistry. 2011;286(50):42937-42948.

[21]Castets, P., Lescure, A., Guicheney, P. and Allamand, V. (2012). Selenoprotein N in skeletal muscle: from diseases to function. Journal of Molecular Medicine, 90(10), pp.1095-1107.

[22]Arbogast S, Ferreiro A. Selenoproteins and Protection against Oxidative Stress: Selenoprotein N as a Novel Player at the Crossroads of Redox Signaling and Calcium Homeostasis. Antioxidants & Redox Signaling. 2010;12(7):893-904.

[23]Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: From pathophysiology to treatment. Annals of Neurology. 2009;65(6):677-686.

[24]Moghadaszadeh B, Aracena-Parks P, Ronan M, Gasmi H, Agrawal P, Hamilton S et al. C.O.5 SEPN1-related myopathy: A defect in redox regulation. Neuromuscular Disorders. 2007;17(9-10):899-900.

[25]Picot, C., Perichon, M., Cintrat, J., Friguet, B. and Petropoulos, I. (2004). The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Letters, 558(1-3), pp.74-78.

[26]Cox, A., Tsomides, A., Kim, A., Saunders, D., Hwang, K., Evason, K., Heidel, J., Brown, K., Yuan, M., Lien, E., Lee, B., Nissim, S., Dickinson, B., Chhangawala, S., Chang, C., Asara, J., Houvras, Y., Gladyshev, V. and Goessling, W. (2016). Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proceedings of the National Academy of Sciences, 113(38), pp.E5562-E5571.

[27]Shimada, T., Azuma, A. and Kumagai, T. (2006). Eastern Spot-billed duck. Bird Research News, 3(10).

[28]Castellano, S., Gladyshev, V., Guigó, R. and Berry, M. (2008). SelenoDB 1.0 : a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Research, 36(suppl_1), pp.D332-D338.

[29]Romagné, F., Santesmasses, D., White, L., Sarangi, G., Mariotti, M., Hübler, R., Weihmann, A., Parra, G., Gladyshev, V., Guigó, R. and Castellano, S. (2013). SelenoDB 2.0: annotation of selenoprotein genes in animals and their genetic diversity in humans. Nucleic Acids Research, 42(D1), pp.D437-D443.

[30]Yates, A., Akanni, W., Amode, M., Barrell, D., Billis, K., Carvalho-Silva, D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., Girón, C., Gordon, L., Hourlier, T., Hunt, S., Janacek, S., Johnson, N., Juettemann, T., Keenan, S., Lavidas, I., Martin, F., Maurel, T., McLaren, W., Murphy, D., Nag, R., Nuhn, M., Parker, A., Patricio, M., Pignatelli, M., Rahtz, M., Riat, H., Sheppard, D., Taylor, K., Thormann, A., Vullo, A., Wilder, S., Zadissa, A., Birney, E., Harrow, J., Muffato, M., Perry, E., Ruffier, M., Spudich, G., Trevanion, S., Cunningham, F., Aken, B., Zerbino, D. and Flicek, P. (2015). Ensembl 2016. Nucleic Acids Research, 44(D1), pp.D710-D716.

[31]Mariotti M, Lobanov A, Guigo R, Gladyshev V. SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Research. 2013;41(15):e149-e149.

[32]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research. 2008;36(Web Server):W465-W469.

[33]Dereeper A, Audic S, Claverie J, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evolutionary Biology. 2010;10(1):8.