REFERENCES

[1]. Mariotti M., Ridge P., Zhang Y., et al. Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS One. 2012;7(3):e33066.

[2]. Lu J., Holmgren A. Selenoproteins. J Biol Chem. 2009 Jan 9;284(2):723-7.

[3]. Mariotti M, Lobanov A, Guigo R, Gladyshev V. SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Res. 2013;41(15):e149-e149.

[4]. Cardoso B., Roberts B., Bush A., et al. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015 Aug;7(8):1213-28.

[5]. Castellano S., Novoselov S., Kryukov G., et al. Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO Rep. 2004 Jan;5(1):71-7.

[6]. Lobanov A., Hatfield D., Gladyshev V. Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta. 2009 Nov;1790(11):1424-8.

[7]. Moghadaszadeh B., Beggs A. Selenoproteins and Their Impact on Human Health Through Diverse Physiological Pathways. APS. 2006; 21 (5): 307-315.

[8]. Labunskyy VM., Hatfield DL., Gladyshev VN. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol Rev. July 2014;94(3):739-777.

[9]. Gong T., Berry M., Pitts M. Selenoprotein M: Structure, Expression and Functional Relevance. Selenium 2016; pp 253-260.

[10]. Han S., Lee B., Yim S., et al. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein. PLoS ONE 2014; 9(4): e95518.

[11]. Osborne S.A., Tonissen K.F. Genomic organisation and alternative splicing of mouse and human thioredoxin reductase 1 genes. BMC Genomics 2001; 2, 10.

[12]. Verma S., Hoffmann FW., Kumar M., et al. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol. 2011;186(4):2127-37.

[13]. Kasaikina M., Hatfield D., Gladyshev V., et al. Understanding selenoprotein function and regulation through the use of rodent models. Biochim Biophys Acta. 2012; 1823(9): 1633–1642.

[14]. Marino M., Stoilova T., Giorgi C., et al. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum. Mol. Genet. 2015; 24:1843-1855

[15]. Tsutsumi R., Saito Y. Selenoprotein P; P for Plasma, Prognosis, Prophylaxis, and More. Biol Pharm Bull. 2020;43(3):366-374

[16]. Kim H., Gladyshev V. Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases. Mol Biol Cell. 2004; 15(3): 1055–1064

[17]. Saito Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr. 2020; Jan;66(1):1-7

[18]. ​​Mariotti M., Ridge PG., Zhang Y., et al. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One. 2012;7(3):e33066

[19]. Jiang B., Adams Z., Moonah S., Shi H., et al. The Antioxidant Enzyme Methionine Sulfoxide Reductase A (MsrA) Interacts with Jab1/CSN5 and Regulates Its Function. Antioxidants (Basel). 2020; 24;9(5):452

[20]. Kim HY., Gladyshev VN. Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell. 2004;15

[21]. Sattar H., Yang J., Zhao X., et al. Selenoprotein-U (SelU) knockdown triggers autophagy through PI3K-Akt-mTOR pathway inhibition in rooster Sertoli cells. Metallomics. 2018;10(7):929-940

[22]. Xu X., Mix H., Carlson B., Grabowski, et al. Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery. JBC 2005;280(50), pp.41568-41575.

[23]. Kim I., Guimaraes M., Zlotnik A., et al. Fetal mouse selenophosphate synthetase 2 (SPS2): Characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. PNAS, 1997; 94(2), pp.418-421.

[24]. Shim M., Kim J., Jung H., et al. Elevation of Glutamine Level by Selenophosphate Synthetase 1 Knockdown Induces Megamitochondrial Formation in Drosophila Cells. JBC 2009;284(47), pp.32881-32894.

[25]. Copeland P., Fletcher J., Carlson B., et al. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. The EMBO Journal, 2000;19(2), pp.306-314.

[26]. Papp L., Lu J., Striebel F., et al. The Redox State of SECIS Binding Protein 2 Controls Its Localization and Selenocysteine Incorporation Function. Mol. Cell. Biol. 2006;26(13), pp.4895-4910.