[1] Labunskyy V, Hatfield D, Gladyshev V. Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews. 2014;94(3):739-777.
[2] Mangiapane E, Pessione A, Pessione E. Selenium and Selenoproteins: An Overview on Different Biological Systems. Current Protein & Peptide Science. 2014;15(6):598-607.
[3] Castellano S, Andres A, Bosch E, Bayes M, Guigo R, Clark A. Low Exchangeability of Selenocysteine, the 21st Amino Acid, in Vertebrate Proteins. Molecular Biology and Evolution. 2009;26(9):2031-2040.
[4] Howard M, Carlson B, Anderson C, Hatfield D. Translational Redefinition of UGA Codons Is Regulated by Selenium Availability. Journal of Biological Chemistry. 2013;288(27):19401-19413.
[5] Mariotti M, Ridge P, Zhang Y, Lobanov A, Pringle T, Guigo R et al. Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS ONE. 2012;7(3):e33066.
[6] Mariotti M, Lobanov A, Guigo R, Gladyshev V. SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Research. 2013;41(15):e149-e149.
[7] Castellano S, Novoselov S, Kryukov G, Lescure A, Blanco E, Krol A et al. Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO reports. 2004;5(1):71-77.
[8] Kryukov G, Castellano S, Novoselov S.V, Lobanov A.V, Zehtab O, Guigo R, Gladyshev V.N. Characterization of Mammalian Selenoproteomes. Science. 2003;300(5624):1439-1443.
[9] [SelenoDB] SelenoDB: selenoproteins database [Internet]. Selenodb.org. 2019 [cited 3 December 2019]. Available from: http://www.selenodb.org/cgi-perl/species-family-search.pl?species=Danio+rerio&family=All
[10] Zavacki, A. M., Mansell, J. B., Chung, M., Klimovitsky, B., Harney, J. W., Berry, M. J. Coupled tRNA(Sec)-dependent assembly of the selenocysteine decoding apparatus. Molec Cell. 2003;11:773-781.
[11] Lu J, Peatman E, Tang H, Lewis J, Liu Z. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics. 2012;13(1):246.
[12] Sarangi GK, Romagné F, Castellano S. Distinct Patterns of Selection in Selenium-Dependent Genes between Land and Aquatic Vertebrates. Molecular Biology and Evolution. 2018; 35(7):1744–1756.
[13] Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 2010;112:97–108.
[14] Van der Geyten S, Byamungu N, Reyns GE, Kühn ER, Darras VM. Iodothyronine deiodinases and the control of plasma and tissue thyroid hormone levels in hyperthyroid tilapia (Oreochromis niloticus). J Endocrinol. 2005;184(3):467-79.
[15] Itoh Y, Bröcker MJ, Sekine S, Hammond G, Suetsugu S, Söll D, Yokoyama S. Decameric SelA•tRNA(Sec) ring structure reveals mechanism of bacterial selenocysteine formation. Science. 2013;340(6128):75-8.
[16] The FASEB Journal [Internet]. Fasebj.org. 2019 [cited 30 November 2019]. Available from: https://www.fasebj.org/action/showCitFormats?doi=10.1096%2Ffasebj.22.1_supplement.999.1
[17] Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med. 2018;127:190-197.
[18] Cox AG, Tsomides A, Kim AJ, Saunders D, Hwang KL, Evason KJ, Heidel J, et al. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci U S A. 2016;113(38):E5562-71.
[19] Varlamova EG, Goltyaev MV, Novoselov VI, Fesenko EE. Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines. Dokl Biochem Biophys. 2017 Sep;476(1):320-322.
[20] Horibata Y, Elpeleg O, Eran A, Hirabayashi Y, Savitzki D, Tal G, Mandel H, Sugimoto H. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans. J Lipid Res. 2018 Jun;59(6):1015-1026.
[21] Castellano S, Lobanov AV, Chapple C, Novoselov SV, Albrecht M, Hua D, Lescure
A, Lengauer T, Krol A, Gladyshev VN, Guigó R. Diversity and functional plasticity of eukaryotic selenoproteins: identification and characterization of the SelJ family. Proc Natl Acad Sci U S A. 2005;102(45):16188-93.
[22] Huang J, Ren F, Jiang Y, Lei X. Characterization of Selenoprotein M and Its Response to Selenium Deficiency in Chicken Brain. Biol Trace Elem Res. 2016;170:449-458.
[23] Han S, Lee BC, Yim SH, Gradyshev V, Lee S. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein. PLoS ONE. 2014;9(4):e95518.
[24] Yan J, Fei Y, Han Y, Lu S. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Cell Biol Int. 2016; 40:1033-1040.
[25] Lee B, Dikiy A, Kim H, Gladyshev V. Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochimica et Biophysica Acta (BBA) - General Subjects. 2009;1790(11):1471-1477.
[26] National Center for Biotechnology Information [Internet]. Ncbi.nlm.nih.gov. 2019 [cited 3 December 2019]. Available from: https://www.ncbi.nlm.nih.gov/
[27] Burk R, Hill K. SELENOPROTEIN P: An Extracellular Protein with Unique Physical Characteristics and a Role in Selenium Homeostasis. Annual Review of Nutrition. 2005;25(1):215-235.
[28] Liao C, Hardison RC, Kennett MJ, Carlson BA, Paulson RF, Prabhu KS. Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood. 2018 Jun 7;131(23):2568-2580.
[29] Pacitti D, Wang T, Martin SA, Sweetman J, Secombes CJ. Insights into the fish thioredoxin system: expression profile of thioredoxin and thioredoxin reductase in rainbow trout (Oncorhynchus mykiss) during infection and in vitro stimulation. Dev Comp Immunol. 2014;42(2):261-77.
[30] Xu XM, Mix H, Carlson BA, Grabowski PJ, Gladyshev VN, Berry MJ, Hatfield DL. Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J Biol Chem. 2005;280(50):41568-75.