Prediction and evolution of selenoproteins in eukaryotic genomes

Bioinformatics, Universitat Pompeu Fabra

> Marco Mariotti Universitat de Barcelona <u>www.mariottigenomicslab.com</u>

What are selenoproteins?

Selenoproteins are proteins that incorporate selenocysteine, the 21st aminoacid

Selenocysteine (Sec or U)

Thomas Ryckmans 2021

Role of selenium

 Selenium is an essential nutrient for vertebrates, many other animals, and microorganisms

• Selenium deficiency leads to disease

Keshan disease (myocardial necrosis): named after the Keshan province in China, whose lands have low levels of selenium

• Excess selenium can be toxic

Selenium is found in cells mostly in selenoproteins

- About 25 selenoproteins in mammals
- Their number varies for different taxa
 - 3 selenoproteins in *Drosophila melanogaster*
 - 1 selenoprotein in *Caenorhabditis elegans*
- Typically oxidoreductase enzymes, with functions in redox homeostasis (e.g. antioxidant defense)
- Sometimes the orthologue of a selenoprotein has Cys instead of Sec.

SelenoU is a selenoprotein in fishes, but it is not in humans

	H.sapiens 1	EPRTFKAKELWEKNGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>CREEAADLS.SLKSMLDQ</mark>
mammalc	M.musculus 1	EPRTFKAKELWEKNGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>C</mark> RAEAA <mark>D</mark> LM.SLKPKLDE
IIIaIIIIIais	S.scrofa [—]	EPKTFKAK <mark>A</mark> LWEKTGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>C</mark> REEAA <mark>D</mark> LS.SLKPRLDE
	B.taurus	DA VTFKAK <mark>A</mark> LWEKNGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>C</mark> REEAT <mark>D</mark> LS.SLKPKLDE
fich	T.rubripes a	ETKTFKAKSLWENSGAVVMAVRRPG <mark>U</mark> FL <mark>C</mark> REEAAELS.SLKPRLD Q
11511	0.latipēs —	EIKTFKAKCLWEKAGAV <mark>I</mark> MAVRRPG <mark>U</mark> FL <mark>C</mark> REEAAELS.SLKPQLD <mark>Q</mark>
	I.punctatus	EEK <mark>S</mark> FKAF T LWEITGAV <mark>I</mark> MAVRRPG <mark>U</mark> SL <mark>F</mark> REEA <mark>S</mark> ELS.SLKPQLDE

What are selenoproteins?

Selenoproteins are proteins that incorporate selenocysteine, the 21st aminoacid

Why do we usually talk about 20 amino acids instead of 21?

The selenocysteine codon?

UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
		-					
AUU	Ile	ACU	Thr	AAU	Asn	AGU	Ser
AUC	Ile	ACC	Thr	AAC	Asn	AGC	Ser
AUA	Ile	ACA	Thr	AAA	Lys	AGA	Arg
AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly

The selenocysteine codon = UGA

				_			-		
UUU	Phe	UCU	Ser		UAU	Tyr		UGU	Cys
UUC	Phe	UCC	Ser		UAC	Tyr		UGC	Cys
UUA	Leu	UCA	Ser		UAA	Stop		NGA S	top/Sec
UUG	Leu	UCG	Ser		UAG	Stop		UGG	Trp
				r r					
	Leu		Pro		CAU	His		CGU	Arg
CUC	Leu		Pro		CAC	His		CGC	Arg
CUA	Leu	CCA	Pro		CAA	Gln		CGA	Arg
CUG	Leu	CCG	Pro		CAG	Gln		CGG	Arg
AUU	Ile	ACU	Thr		AAU	Asn		AGU	Ser
AUC	Ile	ACC	Thr		AAC	Asn		AGC	Ser
AUA	Ile	ACA	Thr		AAA	Lys		AGA	Arg
AUG	Met	ACG	Thr		AAG	Lys		AGG	Arg
				r					
GUU	Val	GCU	Ala		GAU	Asp		GGU	Gly
GUC	Val	GCC	Ala		GAC	Asp		GGC	Gly
GUA	Val	GCA	Ala		GAA	Glu		GGA	Gly
GUG	Val	GCG	Ala		GAG	Glu		GGG	Gly

But UGA is a stop codon in 99.9% of cases!

Recoding of UGA for selenocysteine insertion

Recoding of UGA for selenocysteine insertion

recoding signal in 3'UTR (downstream of coding sequence) = SECIS element

Pathway for selenocysteine biosynthesis and insertion

Pathway for selenocysteine biosynthesis and insertion

Selenocysteine machinery

= factors required for selenoprotein synthesis

- Synthesis of selenocysteine
 - tRNAsec
 - SPS2 / Sephs2
 - SecS / SepSecS
 - Pstk
- Incorporation of Sec into selenoproteins
 - SBP2 / SECISBP2
 - EFsec / eEFsec

Why selenocysteine?

• It is metabolically expensive and complex to make!

• ... also, it seems the same function can be achieved with cysteine instead of selenocysteine:

	H.sapiens 1	EPRTFKAKELWEKNGAVIMAVRRPGCFLCREEAADLS.SLKSMLDO
mammals	M.musculus_1	EPRTFKAKELWEKNGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>C</mark> RAEAA <mark>D</mark> LM.SLKPKLDE
mannais	S.scrofa	<u>EP</u> KTFKAK <mark>A</mark> LWEKTGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>C</mark> REEAA <mark>D</mark> LS.SLKPRLDE
	B.taurus	DA VTFKAK <mark>A</mark> LWEKNGAV <mark>I</mark> MAVRRPG <mark>C</mark> FL <mark>C</mark> REEAT D LS.SLKPKLDE
fich	T.rubripes_a	ETKTFKAKSLWENSGAVVMAVRRPG <mark>U</mark> FL <mark>C</mark> REEAAELS.SLKPRLDQ
11511	<i>O.latipes</i>	EIK <u>T</u> FKAK <u>C</u> LWEKAGAV <mark>I</mark> MAVRRPG <mark>U</mark> FL <mark>C</mark> REEAAELS.SLKPQLD Q
	I.punctatus	EEK <mark>S</mark> FKAF T LWEITGAV <mark>I</mark> MAVRRPG <mark>U</mark> SLFREEA <mark>S</mark> ELS.SLKPQLDE

Why selenocysteine?

Selenocysteine is

- more reactive and
- more resistant to permanent oxidation than cysteine

Computational identification of selenoproteins

The identification of selenocysteine has been compared to **finding a needle in a haystack**

Selenoproteins are usually incorrectly annotated

Selenoproteins are usually incorrectly annotated

Selenocysteine is the penultimate residue in several selenoproteins

Ensembl Transcript Report

Selenoprotein identification

• SECIS prediction

Finding SECIS

Strategies:

- pattern-based: SECISearch v1
- Covariance model: SECISearch v3

https://seblastian.crg.es/

(Mariotti et al., 2013)

Selenoprotein finding in Drosophila (Castellano et al. EMBO Reports 2:697-702, 2001)

Drosophila genome published in 2000

SECIS predicted	35876
SECIS thermo assessment	1220

Too many False Positives! Need some other criteria

Selenoprotein identification

De novo prediction of coding sequences

• SECIS prediction

Selenoprotein search: codon bias across TGA

- Sequence "signals" to discriminate coding from non-coding
 - Build gene structures (made of coding exons)

Selenoprotein finding in Drosophila (Castellano et al. EMBO Reports 2:697-702, 2001)

Drosophila genome published in 2000

SECIS predicted	35876
SECIS thermo assessment	1220
Genes predicted	12194
Predicted Selenoproteins	(4)
Real Selenoproteins	3

Selenoprotein identification

• *De novo* prediction of coding sequences

• SECIS prediction

Homology-based prediction
 of coding sequences

Homology-based selenoprotein finding

Exploit conservation of selenoproteins between species

- Simplest case: "map" selenoproteins from one species to another
- More complex strategies can be used to discover novel selenoproteins

www.natu The mouse genome Atmospheric CO₂ A drop in the ocean Drag reduction Flexing in fluids Experimental model for human biology Regulatory T cells Basis for persistent infection

5 December 2002

╋

International weekly journal of science

Human genome draft published in 2001

Mouse genome draft published in 2002

Characterization of mammalian selenoproteins

(Kryukov et al., Science 300:1439-1443, 2003)

	Selenoprotein	Chromosomal location (number of exons)	Sec location in protein (length of protein)	Selenoprotein structure
	15kDa	1p22.3 (5)	93 (162)	
	DI1	1p32.3 (4)	126 (249)	
	DI2	14q31.1(2)	133 (265)	
	DI3	14q32	144 (278)	
	GPx1	3p21.31 (2)	47 (201)	
	GPx2	14q23.3 (2)	40 (190)	
	GPx3	5q33.1 (5)	73 (226)	
8	GPx4	19p13.3 (7)	73 (197)	
	GPx6	6p22.1 (5)	73 (221)	
	Н	11q12.1 (4)	44 (122)	
	I	2p23.3 (10)	387 (397)	
	К	3p21.31 (5)	92 (94)	
	М	22q12.2 (5)	48 (145)	
10	Ν	1p36.11 (12)	428 (556)	
	0	22q13.33 (9)	667 (669)	[]]
	Р	5p12 (4)	59, 300,318,330, 345, 352, 367, 369, 376, 378 (381)	
kDa	R	16p13.3 (4)	95 (116)	
Da	S	15q26.3 (6)	188 (189)	
	SPS2	-	60 (448)	
1	Т	3q24 (6)	36 (182)	
	TR1	12q23.3 (15)	498 (499)	
	TR2	3q21.2 (16)	655 (656)	
	TR3	22q11.21 (18)	522 (523)	
	V	19q13.13 (6)	273 (346)	
	W	19q13.32 (6)	13 (87)	

Characterization of Mammalian Selenoproteomes

Gregory V. Kryukov,¹ Sergi Castellano,² Sergey V. Novoselov,¹ Alexey V. Lobanov,¹ Omid Zehtab,¹ Roderic Guigó,² Vadim N. Gladyshev¹*

In the genetic code, UGA serves as a stop signal and a selenocysteine codon, but no computational methods for identifying its coding function are available. Consequently, most selenoprotein genes are misannotated. We identified selenoprotein genes in sequenced mammalian genomes by methods that rely on identification of selenocysteine insertion RNA structures, the coding potential of UGA codons, and the presence of cysteine-containing homologs. The human selenoproteome consists of 25 selenoproteins.

In the universal genetic code, 61 codons encode 20 amino acids, and 3 codons are terminators. However, the UGA codon has a dual function in that it signals both the termination of protein synthesis and incorporation of the amino acid selenocysteine (Sec) (1-3). Available computational tools lack the ability to correctly assign UGA function. Consequently, there are numerous examples of misinterpretations of UGA codons as both Sec codons (4) and terminators (5, 6), including annotations of the human genome (7, 8), where no selenoproteins have been correctly predicted. With 18 human selenoprotein genes previously discovered (3), the estimates of the actual number of such genes vary greatly (9). All previously characterized selenoproteins except selenoprotein P (10) contain single Sec residues that are located in enzyme-active sites and are essential for their activity. Thus, misidentification of UGA

codons leads to a loss of crucial biological and functional information. Sec is cotranslationally incorporated into nascent polypeptides in response to UGA codons when a specific stem-loop structure, designated the Sec insertion sequence (SECIS) element, is present in the 3' untranslated regions (UTRs) in eukaryotes and in archaea, or immediately downstream of UGA in bacteria (1, 11-13). Trans-acting factors, including Sec tRNA, Sec-specific elongation factor, selenophosphate synthetase (SPS), Sec synthase, and a SECIS-binding protein, are also required for Sec biosynthesis and insertion (1, 3, 13-15). Most known selenoprotein genes have homologs, in which Sec is replaced with cysteine (Cys). However, these proteins are poor catalysts as compared with selenoproteins (3).

We hypothesized that the UGA dualfunction problem could be solved by identifying selenoprotein genes in sequenced genomes and assigning terminator functions to the remaining in-frame UGAs. The requirement of SECIS elements for Sec insertion and the presence of Cys-containing homologs of selenoproteins suggested two independent bioinformatics methods for selenoprotein identification. In addition, we used an ob-

¹Department of Biochemistry, University of Nebraska, Lincoln, NE 68588–0664, USA. ²Grup de Recerca en Informàtica Biomèdica, Institut Municipal d'Investigació Médica, Universitat Pompeu Fabra, Centre de Regulació Genòmica, Doctor Aiguader 80, 08003 Barcelona, Cata-Ionia, Spain.

^{*}To whom correspondence should be addressed. Email: vgladyshev1@unLedu

Sergi Castellano

- Grau, Universitat de Barcelona
- Doctorat l'any 2007

PostDoc

Marla Berry,
Universitat de Hawaii
Andrew G. Clark,
Cornell University
Sean Eddy,
Janelia Farm

Group Leader

- Max Plank Institute for Evolutionary Antropology, Leipzig

- University College London

The first eukaryotic selenoproteomes

• Manual analysis of selenoproteins in the first genomes published

				Selenoprotein families		Sec gene	Cys gene		5	ec or Cys	gene	Gene not present			1 1	1	Number o						
Г			P. falciparum	15kDa	DI	GPx	MsrA	SelH	Sell	SelJ	SelK	SelM	SelN	SelO	SelP	SelR	SelS	SelT	SelU	SelV	SelW	SPS2	TR
			C. reinhardtii	1		2	1 3		1		1	2		1		2		1	1	1	2	1	1 2
			A. thaliana	1		4	1	2	1		1			1		2		1	1				2
Ч			D. discoideum	1	1		1		1		1					1			1			1	1
			E. cuniculi			1			1														1
l	┨┎┟┎╴		S. pombe			1	1		1					1		1							1
			S. cerevisae			3	1		2					1		1							6
	Цд		C. briggsae	1		1	1	1	1		1					1		1	1			1	1 1
			C. elegans	1		3	1	1	2		1					1		2	1			1	1 1
	Цд		A. gambiae	1		1 1	2	1 2	3					1		1		1				1 1	3
	'		D. melanogaster	1		4	1	1 2	1		1 1	1				1		1				1 1	1 6 1 1 1 3 3 1 3 1 3 2 2 2 2
	Чr		S. purpuratus				1			1													
	4		C. intestinalis	1	1	6 2			3				1	1		1		1	1	1	2	2	1 3
	l	┤┎──	D. rerio	1	2	4		1	2	1	1	2		2	1	1 1	3						
		114-	T. rubripes	1	3	5 2	3	1	1 2	1	1	1	1	1 1	2	2 1	1	1	3			1 1	2
		Ч —	T. nigroviridis	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1		1	1	2
			X. laevis	1	2	4	1		1		1 1	1		1	1	1	1	1	1	1	1 1	1	2
		Чг	G. gallus	1 1	3	5 2	1	1	1		4 1	1	1	1	1	2 1	3	3	3	1	3	1 1	2 1
		ЧЧ	S. scrofa	1	3	6 1	1	2	1		4	1	1	1	2	1	1	1	3	1	2	1 1	3
		'	B. taurus	2	3	6 1	1	1	1		4	1	1	1	2	2	1	1	3	1	1	1 1	3
		Чr	R. norvegicus	2	3	5 2	1	2	1		4	1	1	1	2	2	1	1	3	1	2	1 1	3
		Ц	M. musculus	2	3	5 2	1	2	1		4	1	1	1	2	2	1	1	3	1	2	1 1	3
		l	P. troglodites	1 1	3	5 2	1	1	1		4 1	1	1	1	1	2 1	3	3	3	1	3	1 1	2 1
			H. sapiens	2	3	6 1	1	2	1		4	1	1	1	2	2	1	1	3	1	2	1 1	3

Se	eleno DB	Release 1.0									
	SelenoDB is a joint effort between experimental and computational labs to create, mantain and update a datak eukaryotic selenoprotein genes, proteins, SECIS elements and related molecules. Selenoproteins are ro mispredicted by automatic annotation systems and, therefore, misannotated in most genomic databases. We										
Welcome	Current efforts are directed towards the construction of an initial set of genomic annotations in selected sequenced organisms using <i>ad hoc</i> computational tools and manually curated predictions. Computational approaches include <i>ab initio</i> and comparative gene prediction together with RNA secondary structure predictions. Feel free to use these data in your research provided the source is acknowledged. Functional annotation will be open to the selenium community in the near future.										
Please, select the Virginia lab below to access the database.											
	Virginia Nebraska Barcelona	Hawaii									
	© 2007-2008 Seleno DB										

- A public source of selenium -

PhD students on selenoproteins at the Guigó lab

2007: Sergi Castellano

2009: Charles Chapple

2013: Marco Mariotti

2016: Didac Santesmasses

New automated methods

The explosion of sequencing

NCBI genomes (distinct species)

From manual curation to automated gene finding

Selenoprofiles

Mariotti et al. 2010

Large scale automatic prediction of known selenoprotein families

Ensembl genomes (old release)

		GPx	2	MsrA Sel15	ep15 SelH	SelI	SelJ	SelK	Selk	SelM	SelN	Sel0	SelP	SelR	SelS	SelT	SelU	SelV	Ц	SPS	EFsec	PSTK	ecp43	SBP2 Sec5		
Г	Homo sapiens	5 3	2			1	1 1	2 2 2	·	1	1	1	1	1 2 1	3	1 1 1	3 3	1 10	3 1 1	1 3 1 7	1	1	1	121		
Ц	Pan troglodytes	6 3	1	3 1 1	1 1	1	1 1	2 2 2		1	1	1 1	1	121	11	2 1 1	3 2	1 1	2 4	1 2 1 6	1	1	1	121		
	Gorilla gorilla	4 3 2	1 2	2 1 1	1 1	1	1	1 1 1		1	1	1	1	2 1 1	1	1	2 1 3	21	2 1	1 1 1 6	2 1	1	1 1	1 1		
	Pongo pygmaeus	4 3	3	3 1		1	1 1	2 2 2		1	1	1 1	1	2 3	1 1	1 2	3 4	3 13	1 1 1 2	1 2 1 1 10	1	1 1		2 2 1		
	- Macaca mulatta	5 3		3 1 1		1	1 1	3 3 2	1	1	1	1 1	1	1 2 1	2 2 1	1 1	3 1 4	14	3 2	1 1 1 8	1 1	1	1	121		
	- Tarsius syrichta	a 143	6 2	2 1 1 1	1	1	1	1				1 1	1	1 2	1	2 2	1 2	4	1 2	3 3 5	1	1 1	2	2 2 1		
Π	- Otolemur garnetti	i 223	1 3 2	2 1 1 1	1	1 4	1	1 1		1	1	1	1	2 1	1 1	1 1	1 1 1 5	2	2 2	1 5	3	1	1	121		
	- Microcebus murinu	15 5 2	2 2	1 1 1		1	1	1 2		1	1	1 2 1	1	1 1 1	1 2	1	1 1 2 1	9	1 1 2	1 2 2	1	1 1	1	5 1		
	Tupaia belangeri	2 2 3	2 1	1 1 1 1	1 1	1		3 7 19	1	1	1	2	1	2	1	1 7	2 1	6	1 1 1 3	1 1 6	3	2	3 1 1	1 1 1		
	Mus musculus	5 4	2 3			1	1 1	621		1	1	1 1	1	1 2	2 2 1	2 1	3 1	1 4	3 1 1	1 1	1 1	1	1	2 1		
	Rattus norvegicu	S 3 3 1	2 5 2		2		1 1	127		1	1	1	1	1 1 1	2 2	1 1	3 1	1 7	3 1	1 1 1	1	1		2		
	- Spermophilus_tridecemlin	eatus 313	1 1	2 1 1		1	1	2 1 2			1	1	1	2	1	2	1 1 1	6	4 4	1 1 1		1 1	1	2 1		
	Dipodomys ordii	4 3	1 1 1	1 1 1	1	1	1	131			1	1 1	1	1 1	1		2	1 4	1 2 1	1 1 3	1	2	1	2		
	Cavia porcellus	4 3 1	1 2	2 1 1	1	1	1 1	322		1	1	1	1	1 2	2	2	3 1	1 2	3 1 1	1 1 1 4	1 1	1	- İI	121		
	Oryctolagus cunicu	lus 132	2 1	1 1	1 1	1	1	1 2 2		1	1		1	1		3 6	2	1 7	1 2 2	1 2 3	1	2	2 2	321		
	Ochotona princep	S 5 3 3	1 2 2	2 1 1	1	1 1	1 1	2 1 3		1	1	1	1	1 1	1	1 2	2 1 2	1 1 3	1 1 1 2	1 1 2	1	1	1	1 2 1		
	- Canis familiaris	5 4 4	4	3 1 1	1	1	1 1	3 1 3		2	1	1 1	1	1 2	4 7 1	1	3	2 9	321	1 1 2	9 1	1	2	2 1		
	- Felix catus	4 1 1	1 2 1	1 1 1	1 1		1 1	2	1	1	1	1	1	1 1 1	1 1	1	2	124	2 1	1 1	2	-	1	1 1		
	- Equus caballus	5 3	3 2	1 1 1 1	1	1	1	1 1	1 1	1	1	1 1	1	1 2	1 1	1 1 2	2 1	1 13	3 1 1	1 1	1	2	1	2 1		
	Bos taurus	5 3 1	3	3 1 1 1	1	1 1	1 1	1 1		1	1	1 1 2	1	1 2	1 1	1	3	1 1 1 5	2 2 2	1 1 2	1 1	1	2	1 1		
	Tursiops truncatu	15 3 3 1	6	3 1 1	1	1 1	1 1	1		1	1	3 1	1 1	1 2	1 1	2 1	2	3	2 2 1 1	1 1	1 1	1	2 1	2 1		
	Vicugna pacos	3 2 1	2 2	2 1 2	1	1	1 1	2 2		1		1 1	1	2 1		1	1 1	1 2	1 2	1 1	1	1	1	1 1		
	Myotis lucifugus	5 4 1 1 1	4 1 2	1 1	1	1	1	1 2			1	1 1 1	1	2 1	1	1 1	2 1 1	1 1 3	3 1	134	1	1	ι 1	1 1		
	Pteropus_vampyru	S 4 2 1	1 2	1 1 1	1	1	1 1 1	1 3		1	1	1 1	1	1 2	1 1	1	2 1	4	2 1 1	1 2	1	2	1	2		
	Sorex_araneus	1	2 1	. 1	1 1	1	1	1 1		1	1	1	1	2	1 4	1 1	1 1 1	5	1 1 2	1 1 1 5	1 1	1	1	1 1 1		
	Erinaceus_europae	us 43	1 1	1 1 1		1	1 1	1 1 2			1	1	1	1 2	1 1	2 1	2 1	7	2 1 1	1 2	1 1	1		2		
	Loxodonta_africar	1a <mark>31</mark>	1 1	1 1 1	1	<u> </u>	1	1 1			1	1 1	1	2 1	1	1	1 1	1 6	3 1	1 1	1		1	2		
	Echinops_telfair	i 421	1 3 2	2 1 1	1 1	1	1	2 2			1	1	1 1 1	5 1 7 3 33	1 2	1 1	1 1	1 1 4	1 1 2	14	2 1	1	1	321		
	Procavia_capensi	S 231	1 1 1	1 1	1	1	1	1		1	1	2	1	1 2	1 1	1	2 1 2	16	1 1 1 1	1 1 1	1 1	2	1	1 1 1		
	Dasypus_novemcinct	tus 22	4 2	2 1 4	2	1 1 2		1 1	2	1	1	1	1	1	1 1	1	2 1 1 5	2 1 4	1 3 2	1 5	2	1 1 3	ι 1	1 1 1		
	Monodelphis_domest	ica 4 2	1	3 1 1 2	1	1 1	1 1	1 1	1	<u> </u>	1 1	1 1	1	1 1 1 1	4 3	2 5	3	4	3 1 2 4	2 1	1	1	1	2 1		
	Ornithorhynchus_anat	inus 4 2		2 1 1		1 1	1 1	1 1	1	1	3	3 1	1	1 1	1 1	1	1	11	122	1 1	1	1	1	1		
	Gallus_gallus	1 2		3 1 1		1 1	1	1 2	1 3	1		1 1	1 1	1 1	1 1	1	1 1	1 1 10	3 1	1 1	1	2	1	2 1		
	Xenopus_tropicali	LS 32	1	3 2 1		1	1	1 1 1		1 1	1	1 1 1	1 1	3 1	1 1	1	2 1	1 3 4	3 3	1 1	1	1	1	2 1		
	Danio_rerio	5 1	1 5	i 2 1	1 1	1 1	1 1	1 2	1 1	1 1	1	2	2	2 2	1 1	3	2 1	1	2 2 2	1 1	1		1	1 1 1		
	0ryzias_latipes	6 2	4	1 2 1	1 1	1 2	1 1	1		1 1	1	1	1	2 2	1	2	2 2	5	1 2	1 1	1	1	2	2 1		
Γ	Gasterosteus_aculea	atus 🛛 🗖 1	2 4	1 2 1	1 1	1	1 1 1	1 1	1	1 1	1	1 1	1	2 2	1	2	2 3	6	2 2	1 1	1	1	L 2	2 1		
	Takifugu_rubripe	S 71	1 4	1 2 1	1 1	1	1 1 1	1 1	1	1 1	1	1 1	2	2 2	1 1	2	3 2	5	2 2 1	1 1	1	1	3	2 1		
7	Tetraodon_nigroviri	idis 412	1	3 1 2	1 1	1	1 1	2		1	1	1 1	2	2 1 1	1	1	2 2 1	1 7	121	1	1	1	1	2		
	Ciona_intestinali	is <mark>5</mark> 1	1	1 1 1	1	1	1	1	1		1	1		2 1	1	1	1	2 4	1 2 1	1	1		1	1 1		
	Ciona_savignyi	4 1		2 1 1	1	1	1	1		1	1	1		2	1	1	2	1 2	1 1	1 1	1	1	L 1	1 1		
	Caenorhabditis_eleg	gans 51	1	1 1		3			1 1					1		2	1	3	1 1 2	1	1	1		1		
	Drosophila_melanoga	ster 2		1 1	1 1 1	4		1	1					1	1	1		4	2 2	1 1	1	2	2	1 1		
	Anopheles_gambia	e 1		2 1	1 1	1 2	1							1		1		4	1 2	1 1	1	2		1 1		
	Aedes_aegypti	3		2 1	1 1	3	1 1 1		1			1		1		1		2	1 2 1	1 1 2	2	1	2	1 1		
	Saccharomyces_cerevi	isiae 3				1						1		2				1	2			1	1			
	Legend:																									
	selenocysteine	cysteine	t	hreonine		argin	ine		una	aligne	ed		g	apped		uga_c	ontaini	ng	pseu	Ido		ala	anine			
	glycine diffit homologue		is	isoleucine		othe	r		pheny	ylalar	nine		р	roline		s	erine		tryptophan			va	valine			

Mariotti et al. 2010

Marco Mariotti

- Grau, Università di Bologna
- **Doctorat** l'any 2013
- PostDoc
 - Toni Gabaldon CRG

- John Atkins University College Cork, Ireland

- Vadim Gladyshev Harvard Medical School, Boston

Ramón y Cajal / Group leader
 Universitat de Barcelona

Didac Santesmasses

- Grau, Universitat Pompeu Fabra
- Doctorat l'any 2017

PostDoc

John Atkins
 University College Cork, Ireland

- Vadim Gladyshev Harvard Medical School, Boston

RESEARCH ARTICLE

Computational identification of the selenocysteine tRNA (tRNA^{Sec}) in genomes

Didac Santesmasses^{1,2,3}*, Marco Mariotti^{1,2,3,4}*, Roderic Guigó^{1,2,3}

1 Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain, 2 Universitat Pompeu Fabra (UPF), Barcelona, Spain, 3 Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain, 4 Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

* didac.santesmasses@crg.cat (DS); marco.mariotti@crg.cat (MM)

Eukaryotes

Tracing which species encode selenocysteine

tRNAscan-SE

Bacteria

Tracing which species encode selenocysteine

А

Archaea

Tracing which species encode selenocysteine

Evolution of selenoproteins

- 25 selenoproteins in human, 24 in mouse
- Present in the three domains of life
- Their number varies for different taxa
 - 3 selenoproteins in *Drosophila melanogaster*
 - 1 selenoprotein in *Caenorhabditis elegans*

The increasing number of genomes available allows to trace the evolution of selenoproteins

Selenoproteins in mammals / vertebrates

Vertebrates have a quite conserved selenoproteome

20 duplications

9 gene losses

13 Sec \rightarrow Cys

Mariotti et al. 2012

Selenoproteomes of eukaryotes

- <u>Black bar</u>: proportional to number of selenoproteins
- Red: Sec was lost
- Vertebrates have "many" selenoproteins
- Sec lost in many insects

Charles Chapple

- Grau, University of York, UK
- Doctorat l'any 2009
 - **PostDoc** -Christine Brune INSERM, Marseille

•

• Head of bioinformatics, Saphetor

12 Drosophila genomes published in 2007

SelenoH alignment across fly genomes

D.willistoni lacks some of the genes involved in selenoprotein metabolism

- tRNA-Sec
- SPS2
- EFSec
- SecS

The first animal known to lack selenoproteins

Relaxation of Selective Constraints Causes Independent Selenoprotein Extinction in Insect Genomes

Charles E. Chapple¹, Roderic Guigó^{2*}

Selenoprotein extinction in insects

No selenoproteins, no Sec machinery

Selenoprotein extinctions in fungi

Selenocysteine evolution

It is dynamic: selenoproteomes respond to various evolutionary forces, such as:

- Selenium availability
- Sec "usefulness" as redox catalyzer
- Competition with translation termination

SelenoP: a multi-Sec selenoprotein

- SelenoP transport Sec across the plasma
- It contains 10 Sec residues in human and mouse, with 2 SECISes
- Variable number of Sec across species: proxy for Sec usage
- Some mollusks have >100 Sec residues!

Baclaocos et al. 2019

Acknowledgments

Roderic Guigó

Vadim N. Gladyshev Didac Santesmasses

John F. Atkins Pavel V. Baranov Janinah Baclaocos

UCL Sergi Castellano

SAPHETOR Charles Chapple

UB Montserrat Corominas, Florenci Serras

Toni Gabaldón

Gustavo Salinas

