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Selenium is an essential micronutrient in the diet of many
life forms, including humans and other mammals. Significant
health benefits have been attributed to this element. It is rap-
idly becoming recognized as one of the more promising cancer
chemopreventive agents (19), and there are strong indications
that it has a role in reducing viral expression (4), in preventing
heart disease and other cardiovascular and muscle disorders
(23), and in delaying the progression of AIDS in human im-
munodeficiency virus-infected patients (3). Additional evi-
dence suggests that selenium may have a role in mammalian
development (51), in immune function (70), in male reproduc-
tion (30), and in slowing the aging process (70).

Despite the many potential health benefits of selenium, the
means by which this element promotes better health are only
just beginning to be elucidated (31, 91). There are about 20
known selenium-containing proteins in mammals (33), and it
would seem very likely that several of these are mediators of
health benefits of dietary selenium. Therefore, it is critical to
understand how selenium is inserted into protein and the iden-
tities and functions of the resulting protein products. Selenium
is present in naturally occurring selenium-containing proteins
in two basic forms. It can be inserted posttranslationally as a
dissociable cofactor (32). This rare form of protein-associated
selenium has been found only in several bacterial molybde-
num-containing enzymes and will not be discussed further in
this review. Selenium is also cotranslationally inserted into
protein as the amino acid selenocysteine (Sec). Such occur-
rence of this element in protein is widespread in all major
domains of life and is responsible for the majority of biological
effects of selenium. The elucidation of how Sec is incorporated
into protein has progressed at a rapid pace in the last decade
and has revealed some surprising results. In fact, unraveling
this mystery has altered our understanding of the genetic code,
as the code has now been expanded to include Sec as the 21st
naturally occurring amino acid. When the code was deciphered
in the mid-1960s (48, 79), 20 amino acids were assigned to 61
of the possible 64 codons within the triplet code and 3 codons
were found to function as terminators for protein synthesis.
Each of the 64 code words was therefore assigned a function,
and there did not appear to be room for additional amino
acids. Although it was recognized in the mid-1960s that one

code word, AUG, had a dual role of initiating protein synthesis
and inserting methionine at internal protein positions, the pos-
sibility that a second codon also had two functions was not
considered at that time. We now know that UGA serves as
both a termination codon and a Sec codon. The means by
which UGA serves as a Sec codon and how Sec is biosynthe-
sized and incorporated into protein have been examined in
considerable detail with eubacteria (reviewed in reference 7)
and with mammals (this review). While the fundamental mech-
anism of Sec insertion in these organisms appears to be similar,
recent studies suggest that mammals evolved additional com-
ponents that allow incorporation of multiple Secs into a single
protein and provide stringent regulation of Sec biosynthesis.
The present review discusses our current knowledge of these
features in mammals.

It should be noted that selenium can also be incorporated
nonspecifically into protein (42). The nonspecific occurrence
of this element in protein arises when selenium replaces sulfur
in the biosynthesis of cysteine or methionine and the resulting
selenoamino acid (Sec or selenomethionine) is inserted in
place of the natural amino acid. Such misincorporation of
selenium into protein may be toxic; this subject has been re-
viewed elsewhere (42).

UGA DICTATES Sec INCORPORATION INTO PROTEIN

The initial studies, which suggested that UGA coded for Sec,
involved sequencing selenoprotein genes and aligning their
open reading frames with the amino acid sequences of the
corresponding gene products. The genes for two Sec-contain-
ing proteins, glutathione peroxidase 1 (GPX1) in mammals
(13, 77, 85) and formate dehydrogenase in Escherichia coli
(103), were the first genes found to contain TGA in the open
reading frame. Interestingly, the TGA codons aligned with the
Sec residue in the corresponding gene products. Such studies
did not demonstrate unequivocally that UGA codes for Sec.
Theoretically, a tRNA decoding UGA could introduce a pre-
cursor of Sec into the nascent selenopeptide in response to
UGA and the resulting amino acid residue would be modified
to Sec posttranslationally. Since Sec, unlike the other 20 amino
acids in the genetic code, was found to be biosynthesized on its
tRNA (8, 41), the insertion of a precursor amino acid (e.g.,
phosphoserine [39 and references therein]) was a possibility.
However, the fact that Sec was subsequently shown to be
attached to its tRNA intracellularly in both bacterial (59) and
mammalian (55) cells provided the strongest evidence at that
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time that Sec was indeed the 21st amino acid in the genetic
code. The expanded genetic code that includes Sec is shown in
Fig. 1.

Sec tRNA, A MOST NOVEL tRNA

Sec tRNA (hereafter designated Sec tRNA[Ser]Sec and de-
fined below in “Sec biosynthesis occurs on its tRNA”) is the
only known tRNA that governs the expression of an entire
class of proteins, the selenoproteins. Sec tRNA[Ser]Sec has
therefore been called the key molecule (8) and the central
component (41) in selenoprotein biosynthesis. The structure of
Sec tRNA[Ser]Sec from mammals is shown in Fig. 2 in both a 9/4
(8) and a 7/5 (24) cloverleaf form (i.e., nine or seven paired
bases in the acceptor stem and four or five paired bases in the
T stem). Evidence for both secondary structures has been
presented (46, 47).

Sec tRNA[Ser]Sec has additional features that distinguish it
from all other tRNAs. For example, at 90 nucleotides in length,
it is the longest eukaryotic tRNA sequenced to date (2, 24, 26,
39). This is due to an atypically long variable arm and the
presence of 13 nucleotides in the acceptor and T�C stem
helices (where � indicates pseudouridine) instead of the 12
normally found in all other tRNAs. Sec tRNA[Ser]Sec contains
relatively few modified nucleotides (Fig. 2) compared to other
tRNAs, which may have as many as 15 to 17 modified nucle-
otides. It may have up to six base pairs in the dihydrouracil
stem instead of the three to four found in other tRNAs. Tran-
scription of Sec tRNA[Ser]Sec is also unusual as it begins at the

first nucleotide within the coding sequence (56) while all other
tRNAs, whether they are of nuclear or organelle origin, have a
5� leader sequence that must be processed. Sec tRNA[Ser]Sec,
therefore, has a 5� triphosphate on its terminal guanosine moi-
ety. Many additional novel features of Sec tRNA[Ser]Sec tran-
scription have also been reported, and this subject has been
thoroughly reviewed elsewhere (42).

The Sec tRNA[Ser]Sec gene occurs in single copy in the ge-
nomes of all mammals examined thus far, including humans,
mice, rats, rabbits, cattle, and Chinese hamsters (reference 10
and references therein). The primary sequence of the gene has
also been determined in chickens, frogs, zebra fish, fruit flies,
and nematodes (10); like that in mammals, it is 87 nucleotides
long (the CCA terminus is added posttranscriptionally to make
its final length of 90 nucleotides). The only exception to the
occurrence of single-gene copy in the genomes of animals was
found in zebra fish, where two gene copies exit (100). The
genomes of humans and rabbits also encode one pseudogene,
while that of Chinese hamsters encodes three pseudogenes.

The Sec tRNA[Ser]Sec population in mammalian cells con-
tains two major isoforms that differ from each other by a single
methyl group in the wobble position (position 34) of the anti-
codon (see Fig. 2). One isoform contains methylcarboxy-
methyl-5�-uridine (mcm5U) at position 34, and the other con-
tains methylcarboxymethyl-5�-uridine-2�-O-methylribose (2,
26). mcm5U is the precursor of mcm5Um (17, 50), and addition
of this methyl group marks the final step in Sec tRNA[Ser]Sec

maturation. Interestingly, the addition of this methyl group is

FIG. 1. The genetic code showing that Sec is the 21st amino acid and that Sec is coded by UGA. �, UGA and Sec; Œ, AUG, the other codon
in the genetic code that serves a dual function.
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responsive to selenium status (15, 26, 40), and its presence
confers dramatic changes in tertiary structure (26). Efficient
methylation of mcm5U to form mcm5Um requires the prior
synthesis of each modified base (m1A at position 58, � at
position 55, and isopentenyladenosine [i6A] at position 37) and
an intact tertiary structure (50). Synthesis of m1A, �, i6A, and
mcm5U was not connected to primary and tertiary structure as
stringently as that of mcm5Um. These studies, as well as those
demonstrating increased methylation at the 2�-O-ribose posi-
tion in the presence of selenium (15, 26, 40) and alteration in
tertiary structure with 2�-O-ribose methylation (26, 50), suggest
that the two major Sec tRNA[Ser]Sec isoforms have different
physiological roles.

As noted above, the distributions and relative amounts of
mcm5U and mcm5Um are influenced by selenium status, and
their levels vary in different mammalian cells and tissues (15,
26, 40). The enrichment of the Sec tRNA[Ser]Sec population in
the presence of selenium is apparently due to reduced turnover
rather than enhanced transcription, as evidenced by studies
showing this effect in Xenopus oocytes in the absence of de
novo transcription (17) and by direct measurement of the ef-
fects of selenium on Sec tRNA[Ser]Sec turnover in CHO cells

(R. J. Coppinger, B. A. Carlson, M. Butz, K. Esser, D. L.
Hatfield, and A. M. Diamond, unpublished data).

Sec BIOSYNTHESIS OCCURS ON ITS tRNA

Although the biosyntheses of glutamine and asparagine can
occur on their tRNAs, this mode of synthesizing amino acids is
restricted to certain life forms and is not universal in nature
(93). In contrast, the biosynthesis of Sec that is incorporated
into protein in response to UGA codons is distinctive from the
other 20 amino acids in the genetic code in that its synthesis
always occurs on its tRNA (7, 10). Since Sec can be attached to
tRNACys by cysteyl tRNA synthetase and incorporated non-
specifically into protein in response to Cys codons (42), then
evolution of Sec biosynthesis on its tRNA provides another
means by which this amino acid could have been included in
the genetic code. This proposal is consistent with the sugges-
tion that the presence of Sec in the code occurred relatively
late in the code’s evolution (33).

Sec tRNA[Ser]Sec is initially aminoacylated with serine in
both prokaryotes (7) and eukaryotes (10), and serine serves as
the backbone for Sec synthesis (7, 10, 90). Since serine is

FIG. 2. Mammalian Sec tRNA[Ser]Sec shown in a 9/4 and a 7/5 cloverleaf model (see text). Brackets around bases at positions 11, 12, and 47c
indicate those bases that have been shown to vary in different mammals, as discussed in the text.

VOL. 22, 2002 MINIREVIEW 3567



attached to Sec tRNA[Ser]Sec by seryl tRNA synthetase and the
identity elements in Sec tRNA[Ser]Sec are for serine and not
Sec, but the amino acid inserted into protein is Sec, this tRNA
has been designated Sec tRNA[Ser]Sec (41). The identity ele-
ments for mammalian Sec tRNA[Ser]Sec include the long vari-
able arm and the discriminator base, both of which are essen-
tial for aminoacylation (80, 99). The acceptor, T�C, and D
stems also play a role in the identity process (1).

The biosynthesis of Sec from serine on Sec tRNA[Ser]Sec has
been completely characterized for E. coli (7, 8), but the specific
steps in this process in mammals are unknown. In E. coli, a
pyridoxal phosphate-dependent Sec synthase catalyzes the re-
moval of hydroxyl group from serine to form an aminoacrylyl
intermediate. This intermediate serves as the acceptor for ac-
tivated selenium, resulting in the formation of selenocysteyl-
tRNA[Ser]Sec (7, 8). In mammals, a minor seryl tRNA which
decoded UGA (38) and formed phosphoseryl tRNA (refer-
ence 39 and references therein) was subsequently identified as
Sec tRNA[Ser]Sec (55). The roles of the kinase and phos-
phoseryl tRNA[Ser]Ser in the biosynthesis of Sec have not been
characterized. However, the formation of phosphoserine is
consistent with a Sec synthase-catalyzed reaction, as phosphor-
ylated serine would have a better leaving group than serine in
the Sec biosynthetic pathway.

The active form of selenium that is donated to the interme-
diate in Sec biosynthesis has been identified in prokaryotes as
monoselenophosphate, which is synthesized from selenide and
ATP by selenophosphate synthetase (34). Although the active
selenium donor in eukaryotes has not been characterized, it is
likely the same selenium form (37, 49, 63). Two selenophos-
phate synthetase genes in mammals, designated Sps1 and Sps2,
have been identified (37, 49, 63). SPS2 is a selenoprotein,
suggesting that it is involved in the autoregulation of its own
biosynthesis (37). Once the activated form of selenium is
donated to the intermediate, the biosynthesis of Sec on
tRNA[Ser]Sec is completed.

NOVEL INSERTION OF Sec INTO PROTEIN

The fact that UGA has a dual role of serving as a stop and
a Sec codon (see Fig. 1) raises an important question of how
the cell distinguishes between these two functions. Besides Sec
tRNA[Ser]Sec and the in-frame UGA codon in selenoprotein
mRNA, there are several other factors that are required for
the donation of Sec to protein and dictate the specific function
of UGA as Sec. These include (i) the cis-acting stem-loop
structure, designated the Sec insertion sequence (SECIS) ele-
ment (62); (ii) the SECIS-binding protein 2 (SBP2) (21, 22,
64); and (iii) the Sec-specific elongation factor (EFsec, also
called mSelB) (27, 92).

SECIS elements. SECIS elements are present in 3� untrans-
lated regions (3�-UTRs) of all eukaryotic selenoprotein genes
(62). In archaea, SECIS elements are also located in the 3�-
UTRs, but the structures themselves are different from the
eukaryotic counterparts (82). Bacterial SECIS elements differ
from both eukaryotic and archaeal structures and are located
in the coding regions of selenoprotein genes, immediately
downstream of Sec-encoding UGA codons (7).

Eukaryotic SECIS elements are composed of two helixes

separated by an internal loop; a SECIS core structure, Quartet,
located at the base of helix 2; and an apical loop (Fig. 3). The
Quartet is formed by four non-Watson-Crick interacting base
pairs and is the main functional site of the stem-loop structure
(94). When the apical loop is large enough, an additional
ministem is formed that presumably stabilizes the SECIS
element. The presence of this ministem was used to classify
SECIS elements into form 1 and form 2 structures, with form
1 SECIS elements lacking, and form 2 SECIS elements con-
taining, the ministem (35). These SECIS forms are intercon-
vertible by mutations that extend or shorten the apical loop or
by natural evolution of selenoprotein genes. Primary sequence
conservation of eukaryotic SECIS elements is almost nonex-
istent, with the only strictly conserved nucleotides being UGA
in the 5� portion and GA in the 3� portion of the Quartet. In
addition, a nucleotide immediately preceding the Quartet and
two unpaired nucleotides in the apical loop are adenosines in
the majority of selenoprotein genes (52).

The presence of a SECIS element in the 3�-UTR of seleno-
protein genes dictates any in-frame TGA codon within the
coding region to serve as Sec when a minimal spacing require-
ment between TGA and SECIS element (51 to 111 nucleo-
tides) is met (62). This property suggests that SECIS elements
are both necessary and sufficient for Sec insertion, provided
that mRNA bearing an in-frame UGA and a 3�-UTR SECIS
element have access to ribosome-based protein synthesis ma-
chinery and Sec-specific translation factors. This property also
suggests that designing UGA-SECIS pairs in nucleotide se-
quences can be used for targeted insertion of Sec into protein.

FIG. 3. SECIS element consensus structure. Conserved nucleo-
tides in the SECIS core (Quartet) are shown in boldface. Adenosines
that are conserved in most, but not all, selenoprotein genes are also
indicated.
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SBP2 and EFsec. SECIS elements function by recruiting
SBP2 to form a tight SECIS-SBP2 complex (Fig. 4) (21, 22, 64).
SBP2 binds to the SECIS Quartet and also to sequences di-
rectly preceding the Quartet, but not to the apical loop (21,
29). The reason for strict conservation of the length of helix 2
(located between the Quartet and adenosines in the apical
loop) is not understood. Evidence was also presented that
SBP2 is stably associated with ribosomes via 28S rRNA in a
manner independent of its Sec insertion function, suggesting
that SBP2 preselects ribosomes for Sec insertion (21). An
RNA-binding domain was identified in the C-terminal se-
quence of SBP2, and an additional domain was identified that
was required for Sec insertion, but not for SECIS binding.

Besides binding to SECIS elements and ribosomes, SBP2
binds EFsec, which in turn recruits Sec tRNA[Ser]Sec and in-
serts Sec into nascent polypeptides in response to UGA codons
(27, 92). EFsec is specific for Sec and is different from EF1A,
which is involved in insertion of the other 20 amino acids. SBP2
and EFsec jointly constitute the functional equivalent of the
single SELB factor in bacteria (7). The occurrence of SBP2
and EFsec as separate proteins in eukaryotes suggests a mech-
anism for rapid exchange of the Sec tRNA[Ser]Sec-EFsec com-
plex (from empty to aminoacyl tRNA bound), following Sec
insertion.

Other factors. Additional trans-acting factors have been im-
plicated in Sec insertion in eukaryotes. Among these, Sec syn-
thase is probably the major missing piece in the eukaryotic
selenoprotein machinery. Bacterial Sec synthase was described
several years ago (reference 7 and references therein), but its
counterpart in archaea and eukaryotes is not known. As dis-
cussed above, the roles of the seryl tRNA[Ser]Sec kinase and
phosphoseryl tRNA[Ser]Sec in Sec biosynthesis are not known,
but characterization of the kinase would certainly shed light on
this issue. As also discussed above, Sec tRNA[Ser]Sec exists in
two isoforms that differ by a single methyl group, and the Sec
tRNA[Ser]Sec methylase may in addition play a role in regulat-
ing the mammalian Sec insertion machinery.

UGA: STOP OR GO?

Even though we have considerable insight into the factors
involved in Sec insertion into protein (see above), there are
several additional aspects of selenoprotein biosynthesis that
determine whether a UGA Sec codon dictates termination or
readthrough. Sec insertion appears to be an inefficient process
(references 28, 29, 64, and 66 and references therein), and
clearly some Sec UGA codons support both readthrough and
termination. Selenoprotein P (SelP) from rat plasma contains
10 Sec residues and occurs in four isoforms (65). The shorter
isoforms arise from termination at the second, third, and sev-
enth UGA codons. Thus, these UGA codons are programmed
to dictate a cessation in SelP expression as well as a continu-
ation in SelP production. What then determines the fate of a
UGA Sec codon? In addition to the cis-elements UGA and
SECIS that are essential for Sec insertion, there are several
trans-acting factors as well as other cis-elements that influence
the interplay between Sec incorporation and translation termi-
nation.

The nucleotide context of UGA is a cis-feature that also has
a role in governing Sec incorporation versus translation termi-
nation (62, 69). In mammals, a purine at the position imme-
diately 3� to UGA (the �1 position) favors termination, while
a pyrimidine in this position favors readthrough (62, 69). The
base at the �2 position and the first codon (36) or the first two
codons (78) immediately upstream of UGA also influence ter-
mination efficiency. A �1 pyrimidine followed by a �2 purine
appears to favor termination (36); interestingly, all 10 residues
in rat plasma SelP contain either a �1 purine or the �1, �2
pyrimidine-purine combination (65). It is not clear what role
the penultimate codon or codons play in termination versus
readthrough in SelP, but it would seem that all 10 Sec residues
are encoded in favorable termination contexts. Furthermore,
Ma et al. (65) suggested that trans-acting factors likely play an
important role in the fate of SelP UGA Sec codons. It should
be noted, however, that the �1 base and other downstream

FIG. 4. Mechanism of Sec insertion in eukaryotes (see text). Selenocysteyl-tRNA (in orange with Sec in yellow) is shown in a complex with
EFsec (in blue) and SBP2 (in green) and the SECIS element (shown as a hairpin loop in black) that is ready for donation to the ribosomal A site
to be decoded by UGA (shown in the selenoprotein mRNA in black). Once the Sec tRNA[Ser]Sec complex is donated to the A site, Sec tRNA[Ser]Sec

is transferred to the peptidyl site and Sec is incorporated into the nascent selenopeptide. The growing selenopeptide is shown as alternating gold
and blue balls attached to the tRNA in the peptidyl site. The mRNA (shown in black with its start and stop codons indicated) is attached to the
smaller of the two ribosomal subunits, and the unacylated tRNA is shown leaving the ribosomal exit site.
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cis-acting elements have been reported to play only a minor
role in termination in one study (78) but a more significant role
in another study (36). The discrepancies in these two studies
most certainly reflect the use of different model (reporter)
systems. Different Sec codons manifest different insertion ef-
ficiencies (36, 65, 78) and thus may have different cis- and
trans-acting requirements in establishing Sec insertion-transla-
tion termination interplay.

trans-Acting factors, such as SBP2, EFsec, Sec tRNA[Ser]Sec,
the termination factor eukaryotic released factor 1 (eRF1),
and the eRF1- and ribosome-dependent GTPase eRF3, are
likely candidates that regulate Sec incorporation-translation
termination interplay (21, 29, 36, 64, 78). SBP2 is envisioned to
function in Sec incorporation and to prevent translation ter-
mination (20, 21), and although this is most certainly the case,
hard data supporting this model are lacking (21). As discussed
above, SBP2 is bound tightly to ribosomes and this and other
characteristics of SBP2 suggest that this factor is involved in
ribosome selection for Sec incorporation (21). In this model,
ribosomes containing SBP2 would incorporate Sec, while those
that do not would terminate translation. If SBP2 is first bound
to ribosomes, then a likely next step would involve the forma-
tion of a quaternary complex between SBP2, the SECIS ele-
ment, EFsec, and Sec tRNA[Ser]Sec (21). What is so intriguing
about this model is that SBP2 is the major player in determin-
ing the efficiency of selenoprotein synthesis.

Overexpressing selenoprotein mRNA either in vitro or in
transformed cells provides a model system for determining
what factors are limiting in selenoprotein expression, as the
level of termination at the Sec UGA codon increases due to
limitation of one or more of the trans-acting factors (reference
64 and references therein). Under these conditions, SBP2 en-
hances selenoprotein expression, whereas EFsec and Sec
tRNA[Ser]Sec have only marginal effects, demonstrating that
SBP2 is the limiting factor. SBP2 is also limiting in rabbit
recticulocytes (21). Polysome loading onto mRNAs pro-
grammed for Sec incorporation was decreased in wild-type
compared to cysteine mutant mRNAs where UGA is changed
to a Cys codon (28, 66). However, polysome loading and Sec
incorporation were increased by excess eRF1 (66) or SBP2
(28). These results suggest a defect in translation at the UGA
codon in selenoprotein mRNAs and that this flaw in protein
synthesis is influenced by trans-acting factors.

Once SPB2 is bound to a SECIS element, it does not readily
disassociate from the element (21, 64), suggesting that SBP2
remains attached primarily to its element throughout protein
synthesis. Increased levels of eRF1, however, were observed to
have minimal affects on Sec incorporation (78) or to enhance
this process (36), while excess eRF3 had no affect (36). Since it
is envisioned that Sec incorporation competes with translation
termination (28, 29, 64, 66) and that different UGA codons
have different Sec incorporation efficiencies (36, 65, 78), it was
suggested that the termination factors are at saturating levels
intracellularly, and thus excess amounts of these components
do not have any apparent effect on Sec incorporation (78).
Alternatively, excess RF1 may be involved in sequestering RF3
and therefore not be available for UGA Sec codon competition
(36). As noted above, the variations in findings reported in
these two studies are most likely due to the use of different
model systems.

Overexpression of Sec tRNA[Ser]Sec was found to enhance
Sec insertion in one study involving an analysis of the factors
effecting Sec incorporation and translation termination (78).
This finding, however, is not consistent with studies showing
that reductions (9, 14) or enrichments (75, 76) in the levels of
the Sec tRNA[Ser]Sec population in mammalian cells or tissues
do not affect selenoprotein biosynthesis. Inclusion of two or
three UGA codons in the same reading frame was found to
result in considerable reduction in synthesis of the full-length
product compared to that observed with a single UGA codon
(78). These investigators proposed, largely from this observa-
tion, that Sec insertion favors a nonprocessive rather than a
processive mechanism (78).

SELENOPROTEINS: IDENTITY AND FUNCTIONS

The known Sec-containing proteins in animals are shown in
Fig. 5. The number of selenoproteins identified has increased
dramatically in the last several years. Interestingly, with the
exception of selenophosphate synthetase, there is no overlap
between eukaryotic and prokaryotic selenoproteomes (all sel-
enoproteins in an organism). Bacterial and archaeal seleno-
proteins are primarily involved in catabolic processes and uti-
lize selenium to catalyze various redox reactions (84). In
contrast, functionally characterized eukaryotic selenoproteins
participate in antioxidant and anabolic processes. These obser-
vations suggest an independent origin of prokaryotic and eu-
karyotic selenoproteomes (33).

In eukaryotes, disruption of the Sec tRNA[Ser]Sec gene is
embryonically lethal, suggesting an essential function for one
or more selenoproteins in development (9). One candidate for
an essential selenoprotein gene is the thioredoxin reductase
gene. The protein expressed by this gene is present in all living
organisms, but its Sec-containing form occurs only in animals.
Moreover, disruption of thioredoxin, a substrate for thiore-
doxin reductase, is lethal, as shown by studying mice lacking
the thioredoxin gene (68).

One general theme is evident from the analysis of eukaryotic
selenoproteins. Although these selenoproteins do not have
sequence homology, similar structures, or related functions,
the location of Sec in these proteins appears to be limited to
only several positions. In fact, the majority of eukaryotic sel-
enoproteins can be assigned to one of two groups according to
Sec location (31). One selenoprotein group includes proteins
containing Sec in the N-terminal portions of short domains.
These proteins are largely �� proteins, and Sec is often located
in these proteins in the loop between a �-strand and an �-helix,
according to secondary structure predictions. This location is
similar to that of the CXXC motif (two cysteines separated by
two other amino acids), which is involved in the redox reac-
tions catalyzed by thiol-disulfide oxidoreductases. In fact, sev-
eral selenoproteins employ a similar redox motif, except that
one of the Cys residues is replaced by Sec. For example, SelW,
SelT, SelM, BthD, and their homologs possess a CXXU motif
(where U is Sec), whereas SelP and its homologs have a UXXC
motif. Other selenoproteins of this group, such as the GPX
homologs, contain only a single Sec (i.e., no Cys partner in the
CXXC motif), suggesting that Sec forms either predicted in-
termolecular selenosulfide bonds or selenenic acid derivatives
during redox catalysis.
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The second group of eukaryotic selenoproteins is character-
ized by the presence of Sec in C-terminal sequences. In three
mammalian thioredoxin reductases, which contain a C-termi-
nal GCUG motif, Sec is located in the flexible C-terminal
extension (86). This situation is functionally similar to the
fusion of a low-molecular-weight redox compound to the C
terminus of a common functional domain (in the case of thi-
oredoxin reductases, it is a pyridine nucleotide disulfide oxi-
doreductase domain) (87). The function of the Sec-containing
motif in thioredoxin reductase is to transfer reducing equiva-
lents from the buried disulfide active site to the active center of
a protein substrate. In the case of thioredoxin reductase 2,
which contains an additional N-terminal thiol-disulfide oxido-
reductase domain, the Sec center transfers electrons to this
domain (87). An additional protein of the C-terminal Sec
group is the Drosophila melanogaster G-rich protein (67). This
protein also contains a C-terminal penultimate Sec residue,
followed by a C-terminal glycine. The function of the G-rich
protein is not known.

Independently of the location of Sec in functionally charac-
terized selenoproteins, this amino acid appears to participate
in redox reactions. In selenoenzymes where Sec has a close Cys
partner (e.g., SelT, SelW, BthD, etc.), secondary structure ap-
pears to stabilize a highly reactive selenolate, whereas in the

positions close to the C terminus, the advantage of Sec over
Cys may be due to its lower pKa. Indeed, most cysteines are
protonated under physiological pH conditions, whereas Sec
residues (pKa, �5.5) are ionized. The role of steric differences
has also been suggested to account for the use of Sec. For
example, the C terminus of animal thioredoxin reductases,
Gly-Cys-Sec-Gly, forms an intramolecular selenosulfide bond
(57, 102). However, the corresponding disulfide bond is not
stable due to the decreased atomic size of sulfur compared to
that of selenium.

Among functionally characterized mammalian antioxidant
selenoproteins are four glutathione peroxidases and three thio-
redoxin reductases. In addition, recent studies revealed that
one of the new selenoproteins, SelR, is a zinc-containing me-
thionine sulfoxide reductase with specificity for methionine-R-
sulfoxides (54). MsrA, an enzyme catalyzing a complementary
reaction (i.e., a methionine-S-sulfoxide reduction), has been
known for decades (98). It has been implicated in antioxidant
defense and the life span of mammals (74). With the discovery
of SelR function, a possibility is raised that selenium is also
involved in aging.

It should be noted that the functions of the majority of
selenoproteins are not known. Characterization of their func-
tions is an obvious direction in selenoprotein research.

FIG. 5. Animal Sec-containing proteins. All currently known selenoproteins are listed (left). The relative sizes of selenoproteins (empty boxes)
and the locations of Sec (red box) and an �-helix immediately downstream of Sec (green box) in the selenoprotein sequences are indicated (right).
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HIERARCHY OF SELENOPROTEIN EXPRESSION

A characteristic of selenium deficiency in mammals is that a
hierarchy exists with respect to maintaining the levels of indi-
vidual selenoproteins and retaining selenium in different or-
gans (5, 45, 58, 64, 72). For example, in selenium-deficient rats,
GPX1 activity was reduced to 1% of that observed in the livers
of selenium-sufficient rats and to about 4 to 9% in selenium-
deficient heart, kidney, and lung tissue. GPX4 activity, how-
ever, was reduced only to 25 to 50% in these tissues and was
unaffected in testes. Interestingly, transgenic mice expressing
i6A-deficient Sec tRNA[Ser]Sec had reduced levels of selenium
in their tissues and a hierarchy of selenoprotein activities sim-
ilar to that observed with selenium-deficient mice (76). The
extent of selenoprotein reduction varied in the i6A-deficient
Sec tRNA[Ser]Sec mice, depending on the organ examined (76).

During selenium deprivation in the diets of rats and mice,
the amounts of this element were substantially reduced in liver
and kidney, while brain and testes retained most of their sele-
nium (5, 44). The levels and maturation of Sec tRNA[Ser]Sec

(15, 26, 40) and the efficiency of selenoprotein synthesis (see
references 21 and 36 and references therein) are responsive to
selenium status; thus, these parameters are more affected in
liver and kidney than in brain and testes by changes in sele-
nium status (15, 26, 44). The greater sensitivity of GPX1 ac-
tivity to selenium deficiency has been attributed largely to an
increased turnover in mRNA (18, 58, 83). The enhanced deg-
radation of GPX1 mRNA under conditions of selenium defi-
ciency occurs by the surveillance pathway, designated non-
sense-mediated decay (NMD), where the UGA Sec codon is
recognized as nonsense (73, 89, 97). Interestingly, the position
of the UGA Sec codon relative to the sole, downstream intron
in GPX1 mRNA determines whether the mRNA is subject to
NMD (88). However, other selenoprotein mRNAs, such as
DI1, GPX4, and SelP, are not as sensitive as GPX1 to NMD
during selenium deprivation despite the presence of introns
downstream of their UGA codons (44, 58, 89). The reduction
in GPX1 activity in transgenic mice carrying i6A-deficient Sec
tRNA[Ser]Sec is not likely due to mRNA turnover, since GPX1
mRNA levels were not significantly altered in the kidneys of
these animals compared to those of wild-type animals (76).
SBP2 has also been reported to preferentially recognize SECIS
elements in specific selenoprotein mRNAs, suggesting a mech-
anism to account, at least in part, for selenoprotein expression
hierarchy during selenium deficiency (64). However, another
group found little or no difference in SPB2 recognition of the
SECIS element and suggested that this is not likely to be a
mechanism involved in selenoprotein hierarchy (29). Both
groups agreed that if SPB2 recognition of SECIS elements is
involved in the extreme sensitivity of GPX1 mRNA to NMD,
then an additional factor must also be required. In any case, it
would seem that there are several levels of regulation involved
in determining the priority of selenoprotein synthesis under
various biological conditions.

IDENTITY OF Sec UGA CODONS

Since the occurrence of UGA in the genetic code is most
commonly used for the cessation of protein synthesis, the iden-
tification and correct annotation of selenoprotein genes con-

taining Sec-encoding UGAs have been difficult. In fact, the
absolute majority of selenoprotein genes are incorrectly anno-
tated in completely sequenced genomes, including the human
genome. Typically, Sec-encoding TGA codons are recognized
by the currently available annotation programs as stop signals;
alternatively, the entire exons containing TGA codons are not
recognized. In addition, there are examples when in-frame
5�-UTR sequences or terminator UGA codons were incor-
rectly interpreted as Sec codons (12).

Since selenoprotein genes do not have a common amino
acid consensus sequence or a functional motif and the location
of TGA within coding sequences is not universally conserved,
the SECIS element provides an identifier that can help in the
annotation of uncharacterized selenoprotein genes. Although
conservation of the primary sequence of SECIS elements is
low, their secondary structures are conserved. In addition, cal-
culation of the free energy of SECIS elements as a measure of
their stability aided in describing these structures computation-
ally. A computer program, SECISearch, has been developed
that is capable of identifying selenoprotein genes in nucleotide
sequence databases (53). Initial applications of SECISearch or
similar approaches to expressed sequence tag databases iden-
tified three selenoprotein genes and were the first examples of
identification of new genes by searching for RNA structures
(53, 60). Subsequently, this approach was applied to the entire
genome of D. melanogaster (11, 67). These studies revealed the
presence of three selenoprotein genes, including two proteins
(G-rich protein and BthD) that had no homology to known
proteins (67). Not surprising, these genes were incorrectly an-
notated in the completed fly genome. Identification of seleno-
protein genes through recognition of SECIS elements should
be useful in the future analysis of the human genome.

CONSEQUENCES OF CHANGES IN
Sec tRNA[Ser]Sec EXPRESSION

Since Sec tRNA[Ser]Sec is absolutely required for the expres-
sion of a relatively small class of proteins, genetic manipula-
tions of this molecule can be used to study selenoproteins and
the role of selenium in essential biological processes. The con-
sequences of both overexpressing (75, 76) and underexpressing
(9, 14) Sec tRNA[Ser]Sec have been examined, as well as the
consequences of expressing different mutant Sec tRNA[Ser]Sec

forms (reference 76 and see below). Chinese hamster ovary
cells were transfected with varying numbers, up to as many as
10 (75), of Sec tRNA[Ser]Sec gene copies and transgenic mice
carrying as many as 20 wild-type Sec tRNA[Ser]Sec transgenes
were generated, but there was no detectable effect on seleno-
protein biosynthesis in either study. Most of the increase in
the amount of the Sec tRNA[Ser]Sec population occurred in
mcm5U levels, suggesting that the methylase that converts this
isoform to mcm5Um is limiting for tRNA maturation. The fact
that selenoprotein biosynthesis was not affected by enriching
the Sec tRNA[Ser]Sec population demonstrates that the Sec
tRNA[Ser]Sec isoforms are not limiting in protein synthesis.

The Sec tRNA[Ser]Sec population has also been reduced ap-
proximately in half in mice that were heterozygous for a tar-
geting vector lacking the Sec tRNA[Ser]Sec gene (9) and in
mouse embryonic stem cells that were heterozygous for a sim-
ilar targeting vector (14). GPX1 levels were virtually the same
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in wild-type and heterozygous cultured cells (14) and in each of
the tissues examined in wild-type and heterozygous mice (9),
suggesting that the Sec tRNA[Ser]Sec population is not limit-
ing. As discussed above, removal of both copies of the Sec
tRNA[Ser]Sec gene from the mouse genome is embryonically
lethal, demonstrating that selenoprotein expression is essential
in mammalian development (9).

The consequences of overexpressing either a mutant Sec
tRNA[Ser]Sec lacking the highly modified i6A at position 37 (76)
or containing an A at position 34 in place of mcm5U or
mem5Um (M. Moustafa, B. Carlson, M. El-Saadani, M. Rao,
and D. Hatfield, unpublished data) on selenoprotein synthesis
were examined by introducing multiple copies of the corre-
sponding mutant gene into the mouse genome. The levels of
several selenoproteins were altered in mice expressing either
mutant Sec tRNA[Ser]Sec in a protein- and tissue-specific man-
ner (reference 76 and unpublished data). Since the mRNA
levels of those selenoproteins that were most effected by ex-
pression of the i6A� Sec tRNA[Ser]Sec remained essentially the
same, the defect in selenoprotein synthesis occurred at the
translation step. Maturation of Sec tRNA[Ser]Sec was inhibited
in both these transgenic strains, as evidenced by the reduction
in the mcm5Um isoform. These studies mark the first examples
of transgenic mice engineered to encode functional tRNA
transgenes and provide a model system for studying the role of
specific selenoproteins in health.

UGA, A LOGICAL CODON CHOICE FOR Sec
IN EVOLUTION

It can be argued that UGA is by far the most fascinating
codon within the genetic code as it likely has served more
functions than any other code word in evolution. For example,
an examination of current genetic language shows that UGA
functions as a termination codon (79); a Sec codon (8, 41); a
cysteine codon in Euplotes octocarinatus (71); a tryptophan
codon in mitochondria (81), Mycoplasma, and Sprioplasma (81,
95); an inefficiently read tryptophan codon in Bacillus subtilis
(61); and an inefficiently read codon in E. coli that is presum-
ably decoded by tryptophan tRNA (96). In mammals, the
UGA stop codon in rabbit �-globin mRNA has been shown to
serve as many as eight functions (16), including a stop codon;
a suppressor codon that supports partial readthrough for Arg
Cys, Trp, and Ser tRNAs (the latter tRNA is Sec tRNA[Ser]Sec,
which is aminoacylated with serine [16]); and a translation
reading gap codon with the abyss consisting of one, two, or
three codons. The fact that other globin mRNAs terminate in
UAA or UAG, but do not appear to serve as suppressor co-
dons or to promote translation reading gaps, suggest that these
functions are associated solely with UGA.

Since other stop or infrequently read codons can code for
Sec when the anticodon in Sec tRNA[Ser]Sec is complementary
to the corresponding codon used in place of TGA (6, 43), it
would seem that any of a number of codons could have evolved
for Sec. However, the variety of functions of UGA suggest that
this codon has been loosely programmed in evolution and
therefore is the most likely code word to have evolved for the
infrequently used amino acid Sec. This possibility would seem
to be even more plausible if the inclusion of Sec in the genetic

code occurred in evolution after the code had evolved rather
than if the original code accommodated Sec.

It should be noted that there are two contrasting proposals
about when living organisms acquired the ability to synthesize
selenoproteins (8, 33). One suggests that Sec was encoded by
UGA in primitive anaerobic organisms and was a component
of the primordial genetic code (8). In this theory, the subse-
quent increase of oxygen in the atmosphere by photosynthetic
organisms counterselected against the use of Sec, because of
the sensitivity of this amino acid to oxidation. An alternative
hypothesis posits that Sec evolved only in the later stages of the
development of the genetic code and that the number of sel-
enoproteins accumulated rather than decreased in evolution
(33). In contrast to the idea that a declining use of Sec oc-
curred in evolution, this latter proposal suggested that many
eukaryotic selenoproteins, serving as antioxidant and redox
proteins, were employed by aerobic organisms to function in
antioxidant systems.

As discussed above, Sec is dramatically different from any
other of the 20 protein amino acids in the mode of its incor-
poration and basic biosynthetic steps. It is the only amino acid
that directly requires a structural element in mRNA in addi-
tion to the information specified by the genetic code. It is
synthesized on its own tRNA, while free Sec is not a substrate
for selenoprotein synthesis. The Sec biosynthetic machinery is
strikingly different from that of other amino acids and employs
additional Sec-specific components. These unique features of
Sec biosynthesis and insertion favor the view that Sec was
added to the already existing genetic code to take advantage of
the unique chemistry of selenium to counteract environmental
stress and/or evolve new functions (33).

SUMMARY

The only addition of a new amino acid to the genetic code
since this code was deciphered in the mid 1960s was the inclu-
sion of the selenium-containing amino acid, Sec, that is coded
by UGA. UGA, therefore, functions as both a signal for ter-
mination and a codon for Sec. Tremendous progress has been
made in recent years in understanding the mechanism of how
Sec is synthesized and inserted into nascent selenopeptides
in mammals. This includes discoveries of how specific 3�-
UTR mRNA structures, designated SECIS elements, func-
tion in recruiting SBP2, the Sec-specific EF, and seleno-
cysteyl-tRNA[Ser]Sec into a large Sec insertion complex, the
selenosome. In this unique amino acid insertion system, Sec
tRNA[Ser]Sec is the key molecule that is used both as the site for
Sec biosynthesis and for its incorporation into protein. The
gene carrying this tRNA has been used as a tool to study the
expression of selenoproteins by the introduction of additional
wild-type and mutant transgenes into the mouse genome and
by removal of the gene from the mouse genome. SECIS ele-
ments have been used in computational screens to identify a
number of new selenoprotein genes, whose characterization
will shed light on many biological and health-related properties
of selenium.
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