
Nucleic Acids Research, 1994, Vol. 22, No. 22 4673-4680

CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice

Julie D.Thompson, Desmond G.Higgins+ and Toby J.Gibson*
European Molecular Biology Laboratory, Postfach 102209, Meyerhofstrasse 1, D-69012 Heidelberg,
Germany

Received July 12, 1994; Revised and Accepted September 23, 1994

ABSTRACT
The sensitivity of the commonly used progressive
multiple sequence alignment method has been greatly
improved for the alignment of divergent protein
sequences. Firstly, individual weights are assigned to
each sequence in a partial alignment in order to down-
weight near-duplicate sequences and up-weight the
most divergent ones. Secondly, amino acid substitution
matrices are varied at different alignment stages
according to the divergence of the sequences to be
aligned. Thirdly, residue-specific gap penalties and
locally reduced gap penalties in hydrophilic regions
encourage new gaps in potential loop regions rather
than regular secondary structure. Fourthly, positions
in early alignments where gaps have been opened
receive locally reduced gap penalties to encourage the
opening up of new gaps at these positions. These
modifications are incorporated into a new program,
CLUSTAL W which is freely available.

INTRODUCTION
The simultaneous alignment of many nucleotide or amino acid
sequences is now an essential tool in molecular biology. Multiple
alignments are used to find diagnostic patterns to characterise
protein families; to detect or demonstrate homology between new
sequences and existing families of sequences; to help predict the
secondary and tertiary structures of new sequences; to suggest
oligonucleotide primers for PCR; as an essential prelude to
molecular evolutionary analysis. The rate of appearance of new
sequence data is steadily increasing and the development of
efficient and accurate automatic methods for multiple alignment
is, therefore, of major importance. The majority of automatic
multiple alignments are now carried out using the 'progressive'
approach of Feng and Doolittle (1). In this paper, we describe
a number of improvements to the progressive multiple alignment
method which greatly improve the sensitivity without sacrificing
any of the speed and efficiency which makes this approach so

practical. The new methods are made available in a program
called CLUSTAL W, which is freely available and portable to
a wide variety of computers and operating systems.

In order to align just two sequences, it is standard practice to
use dynamic programming (2). This guarantees a mathematically
optimal alignment, given a table of scores for matches and
mismatches between all amino acids or nucleotides [e.g. the
PAM250 matrix (3) or BLOSUM62 matrix (4)] and penalties
for insertions or deletions of different lengths. Attempts at
generalising dynamic programming to multiple alignments are
limited to small numbers of short sequences (5). For much more
than eight or so proteins of average length, the problem is
uncomputable given current computer power. Therefore, all of
the methods capable of handling larger problems in practical
timescales make use of heuristics. Currently, the most widely
used approach is to exploit the fact that homologous sequences
are evolutionarily related. One can build up a multiple alignment
progressively by a series of pairwise alignments, following the
branching order in a phylogenetic tree (1). One first aligns the
most closely related sequences, gradually adding in the more
distant ones. This approach is sufficiently fast to allow alignments
of virtually any size. Further, in simple cases, the quality of the
alignments is excellent, as judged by the ability to correctly align
corresponding domains from sequences of known secondary or
tertiary structure (6). In more difficult cases, the alignments give
good starting points for further automatic or manual refinement.

This approach works well when the data set consists of
sequences of different degrees of divergence. Pairwise alignment
of very closely related sequences can be carried out very
accurately. The correct answer may often be obtained using a
wide range of parameter values (gap penalties and weight matrix).
By the time the most distantly related sequences are aligned, one
already has a sample of aligned sequences which gives important
information about the variability at each position. The positions
of the gaps that were introduced during the early alignments of
the closely related sequences are not changed as new sequences
are added. This is justified because the placement of gaps in

*To whom correspondence should be addressed

'Present address: European Bioinformatics Institute, Hinxton Hall, Hinxton, Cambridge CB10 1RQ, UK

\.j 1994 Oxford University Press

4674 Nucleic Acids Research, 1994, Vol. 22, No. 22

alignments between closely related sequences is much more
accurate than between distantly related ones. When all of the
sequences are highly divergent (e.g. less than -25-30% identity
between any pair of sequences), this progressive approach
becomes much less reliable.

There are two major problems with the progressive approach:
the local minimum problem and the choice of alignment
parameters. The local minimum problem stems from the 'greedy'
nature of the alignment strategy. The algorithm greedily adds
sequences together, following the initial tree. There is no
guarantee that the global optimal solution, as defined by some
overall measure of multiple alignment quality (7,8), or anything
close to it, will be found. More specifically, any mistakes
(misaligned regions) made early in the alignment process cannot
be corrected later as new information from other sequences is
added. This problem is frequently thought of as mainly resulting
from an incorrect branching order in the initial tree. The initial
trees are derived from a matrix of distances between separately
aligned pairs of sequences and are much less reliable than trees
from complete multiple alignments. In our experience, however,
the real problem is caused simply by errors in the initial
alignments. Even if the topology of the guide tree is correct, each
alignment step in the multiple alignment process may have some
percentage of the residues misaligned. This percentage will be
very low on average for very closely related sequences but will
increase as sequences diverge. It is these misalignments which
carry through from the early alignment steps that cause the local
minimum problem. The only way to correct this is to use an
iterative or stochastic sampling procedure (e.g. 7,9,10). We do
not directly address this problem in this paper.
The alignment parameter choice problem is, in our view, at

least as serious as the local minimum problem. Stochastic or
iterative algorithms will be just as badly affected as progressive
ones if the parameters are inappropriate: they will arrive at a
false global minimum. Traditionally, one chooses one weight
matrix and two gap penalties (one for opening a new gap and
one for extending an existing gap) and hope that these will work
well over all parts of all the sequences in the data set. When the
sequences are all closely related, this works. The first reason
is that virtually all residue weight matrices give most weight to
identities. When identities dominate an alignment, almost any
weight matrix will find approximately the correct solution. With
very divergent sequences, however, the scores given to non-
identical residues will become critically important; there will be
more mismatches than identities. Different weight matrices will
be optimal at different evolutionary distances or for different
classes of proteins.
The second reason is that the range of gap penalty values that

will find the correct or best possible solution can be very broad
for highly similar sequences (11). As more and more divergent
sequences are used, however, the exact values of the gap penalties
become important for success. In each case, there may be a very
narrow range of values which will deliver the best alignment.
Further, in protein alignments, gaps do not occur randomly (i.e.
with equal probability at all positions). They occur far more often
between the major secondary structural elements of a-helices and
fl-strands than within (12).
The major improvements described in this paper attempt to

address the alignment parameter choice problem. We dynamically
vary the gap penalties in a position- and residue-specific manner.
The observed relative frequencies of gaps adjacent to each of

penalty after each residue. Short stretches of hydrophilic residues
(e.g. 5 or more) usually indicate loop or random coil regions
and the gap opening penalties are locally reduced in these
stretches. In addition, the locations of the gaps found in the early
alignments are also given reduced gap opening penalties. It has
been observed in alignments between sequences of known
structure that gaps tend not to be closer than roughly eight
residues on average (12). We increase the gap opening penalty
within eight residues of exising gaps. The two main series of
amino acid weight matrices that are used today are the PAM
series (3) and the BLOSUM series (4). In each case, there is
a range of matrices to choose from. Some matrices are

appropriate for aligning very closely related sequences where
most weight by far is given to identities, with only the most
frequent conservative substitutions receiving high scores. Other
matrices work better at greater evolutionary distances where less
importance is attached to identities (13). We choose different
weight matrices, as the alignment proceeds, depending on the
estimated divergence of the sequences to be aligned at each stage.

Sequences are weighted to correct for unequal sampling across

all evolutionary distances in the data set (14). This down-weights
sequences that are very similar to other sequences in the data
set and up-weights the most divergent ones. The weights are

calculated directly from the branch lengths in the initial guide
tree (15). Sequence weighting has already been shown to be
effective in improving the sensitivity of profile searches (15,16).
In the original CLUSTAL programs (17-19), the initial guide
trees, used to guide the multiple alignment, were calculated using

the UPGMA method (20). We now use the Neighbour-Joining
method (21) which is more robust against the effects of unequal
evolutionary rates in different lineages and which gives better
estimates of individual branch lengths. This is useful because it
is these branch lengths which are used to derive the sequence

weights. We also allow users to choose between fast approximate
alignments (22) or full dynamic programming for the distance
calculations used to make the guide tree.
The new improvements dramatically improve the sensitivity

of the progressive alignment method for difficult alignments
involving highly diverged sequences. We show one very

demanding test case of over 60 SH3 domains (23) which includes
sequence pairs with as little as 12% identity and where there is
only one exactly conserved residue across all of the sequences.

Using default parameters, we can achieve an alignment that is
almost exactly correct, according to available structural
information (24). Using the program in a wide variety of
situations, we find that it will normally find the correct alignment
in all but the most difficult and pathological of cases.

MATERIAL AND METHODS
The basic alignment method
The basic multiple alignment algorithm consists of three main
stages: (i) all pairs of sequences are aligned separately in order
to calculate a distance matrix giving the divergence of each pair
of sequences; (ii) a guide tree is calculated from the distance
matrix; (iii) the sequences are progressively aligned according
to the branching order in the guide tree. An example using 7
globin sequences of known tertiary structure (25) is given in
Figure 1.

The distance matrix/pairwise alignments
In the original CLUSTAL programs, the pairwise distances were

the 20 amino acids (12) are used to locally adjust the gap opening calculated using a fast approximate method (22). This allows very

Nucleic Acids Research, 1994, Vol. 22, No. 22 4675

Hba-Horse Myg_Phy-a
Hba_Hun

HbbbHorse

Hbb_Hunun GIb5_Petna

Lgb2_Luplu

.086 Hbb_Human: 0.221
.226

061
Hbb_Horse: 0.225

.01 Hba_Hunuan: 0.194
Hba-jHorse: 0.203

~~Myg..Pbyca: 0.411

389
Gib5Petma: 0398

Lgb2..Lupiu: 0.442

-VEK9 W~ 1001.3?MLO

--V__y, 2UVLVIaVWaKSphtAinooDzL3Lvx4I1aLqcVDM1LK
VwaIl *I3KKRSM1 tI3E0DLVKVY*IA0TIV0

A UWVXSVNDAX Df --UOmnZDL"QVD "
VI- PM]Qv4?A=:vvGaz AL

= ~~ ~~~~~~~~~~~~~~~~~~~~~~~~

E---

ZL LDK V1LhSV --1 ---

LOW P)LDl IV T KY ------

LAV - --- AII- CI A------

V I I? D A-- -

. . .

Figure 1. The basic progressive alignment procedure, illustrated using a set of
7 globins of known tertiary structure. The sequence names are from Swiss Prot
(38): Hba_Horse: horse ca-globin; Hba-Human: human ca-globin; Hbb_Horse:
horse 3-globin; HbbHuman: human ,B-globin; Myg.Phyca: sperm whale
myoglobin; Glb5.Petma: lamprey cyanohaemoglobin; Lgb2_Luplu: lupin
leghaemoglobin. In the distance matrix, the mean number of differences per residue
is given. The unrooted tree shows all branch lengths drawn to scale. In the rooted
tree, all branch lengths (mean number of differences per residue along each branch)
are given as well as weights for each sequence. In the multiple alignment, the
approximate positions of the 7 a-helices common to all 7 proteins are shown.
This alignment was derived using CLUSTAL W with default parameters and
the PAM (3) series of weight matrices.

large numbers of sequences to be aligned, even on a

microcomputer. The scores are calculated as the number of k-
tuple matches (runs of identical residues, typically 1 or 2 long
for proteins or 2-4 long for nucleotide sequences) in the best
alignment between two sequences minus a fixed penalty for every
gap. We now offer a choice between this method and the slower
but more accurate scores from full dynamic programming
alignments using two gap penalties (for opening or extending
gaps) and a full amino acid weight matrix. These scores are
calculated as the number of identities in the best alignment divided
by the number of residues compared (gap positions are excluded).
Both of these scores are initially calculated as per cent identity
scores and are converted to distances by dividing by 100 and
subtracting from 1.0 to give number of differences per site. We
do not correct for multiple substitutions in these initial distances.

In Figure 1 we give the 7 x7 distance matrix between the 7 globin
sequences calculated using the full dynamic programming
method.

The guide tree
The trees used to guide the final multiple alignment process are

calculated from the distance matrix of step 1 using the Neighbour-
Joining method (21). This produces unrooted trees with branch
lengths proportional to estimated divergence along each branch.
The root is placed by a 'mid-point' method (15) at a position
where the means of the branch lengths on either side of the root
are equal. These trees are also used to derive a weight for each
sequence (15). The weights are dependent upon the distance from
the root of the tree but sequences which have a common branch
with other sequences share the weight derived from the shared
branch. In the example in Figure 1, the leghaemoglobin
(Lgb2-Luplu) gets a weight of 0.442, which is equal to the
length of the branch from the root to it. The human (-globin
(Hbb_Human) gets a weight consisting of the length of the
branch leading to it that is not shared with any other sequences
(0.081) plus half the length of the branch shared with the horse
3-globin (0.226/2) plus one quarter the length of the branch
shared by all four haemoglobins (0.061/4) plus one fifth the
branch shared between the haemoglobins and myoglobin
(0.015/5) plus one sixth the branch leading to all the vertebrate
globins (0.062). This sums to a total of 0.221. In contrast, in
the normal progressive alignment algorithm, all sequences would
be equally weighted. The rooted tree with branch lengths and
sequence weights for the 7 globins is given in Figure 1.

Progressive alignment
The basic procedure at this stage is to use a series of pairwise
alignments to align larger and larger groups of sequences,
following the branching order in the guide tree. You proceed
from the tips of the rooted tree towards the root. In the globin
example in Figure 1 you align the sequences in the following
order: human vs. horse ,B-globin; human vs. horse ct-globin; the
2 oa-globins vs. the 2 0-globins; the myoglobin vs. the
haemoglobins; the cyanohaemoglobin vs. the haemoglobins plus
myoglobin; the leghaemoglobin vs. all the rest. At each stage
a full dynamic programming (26,27) algorithm is used with a
residue weight matrix and penalties for opening and extending
gaps. Each step consists of aligning two existing alignments or
sequences. Gaps that are present in older alignments remain fixed.
In the basic algorithm, new gaps that are introduced at each stage
get full gap opening and extension penalties, even if they are
introduced inside old gap positions (see the section on gap
penalties below for modifications to this rule). In order to
calculate the score between a position from one sequence or
alignment and one from another, the average of all the pairwise
weight matrix scores from the amino acids in the two sets of
sequences is used, i.e. if you align 2 alignments with 2 and 4
sequences respectively, the score at each position is the average
of 8 (2 x4) comparisons. This is illustrated in Figure 2. If either
set of sequences contains one or more gaps in one of the positions
being considered, each gap versus a residue is scored as zero.
The default amino acid weight matrices we use are rescored to
have only positive values. Therefore, this treatment of gaps treats
the score of a residue versus a gap as having the worst possible
score. When sequences are weighted (see Improvements to
progressive alignment, below), each weight matrix value is

Hbb_Human 1I

Hbb_Horse 2
Hba_Hunan 3
Hba_Horse 4
MygYPhyca 5
GlbS_Petma 6
Lgb2_Luplu 7

.17
59
59
.77
.81
.87

.60

.59 .13

.77 .75 .75

.82 .73 .74

.86 .86 .88
.90

Pairwise alignmentCaculate ditnemti

lUnotdNeighbor-joiningt

Rooted NJ tree (guide tree)
and sequence weights

Progressive
alignmentn
Align following .aav
the guide tree

_51i
_- L=- -==

4676 Nucleic Acids Research, 1994, Vol. 22, No. 22

1 peeksava 1

2 geekaa 1
3 padktnv k aa
4 aadktnv a

5 egewql hv
6 aaekt k sa

Without sequence Weights:
Score- m(t.T)

+ Y(t,1)
+ Y(1,-)
+ Y(1,)
+ K(k,v)
+ M(k, 1)
+ M(k,v)
* M(k, 1) /S

With sequence Weights Wi:
Bore -* (tIV)*j5

+ M(t,L)Wj.w6
* Kl1,)1SW
+ Y(1,1)*WzWe
+ Klk,v)WtW5
+ Y(lck,1)U%tW6
* K(k,v)1I4W5
* MMl,1) 1We/S

Gap opein peralty

QLSQEEMVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDL
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLS
VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLS

Figure 2. The scoring scheme for comparing two positions from two alignments.
Two sections of alignment with 4 and 2 sequences respectively are shown. The
score of the position with amino acids T,L,K,K versus the position with amino
acids V and I is given with and without sequence weights. M(X,Y) is the weight
matrix entry for amino acid X versus amino acid Y. W,, is the weight for
sequence n.

multiplied by the weights from the 2 sequences, as illustrated
in Figure 2.

Improvements to progressive alignment
All of the remaining modifications apply only to the fmal
progressive alignment stage. Sequence weighting is relatively
straightforward and is already widely used in profile searches
(15,16). The treatment of gap penalties is more complicated.
Initial gap penalties are calculated depending on the weight
matrix, the similarity of the sequences and the length of the
sequences. Then, an attempt is made to derive sensible local gap
opening penalties at every position in each prealigned group of
sequences that will vary as new sequences are added. The use
of different weight matrices as the alignment progresses is novel
and largely by-passes the problem of initial choice of weight
matrix. The final modification allows us to delay the addition
of very divergent sequences until the end of the alignment
process, when all of the more closely related sequences have
already been aligned.

Sequence weighting
Sequence weights are calculated directly from the guide tree. The
weights are normalised such that the biggest one is set to 1.0
and the rest are all less than 1.0. Groups of closely related
sequences receive lowered weights because they contain much
duplicated information. Highly divergent sequences without any
close relatives receive high weights. These weights are used as
simple multiplication factors for scoring positions from different
sequences or prealigned groups of sequences. The method is
illustrated in Figure 2. In the globin example in Figure 1, the
two at-globins get down-weighted because they are almost
duplicate sequences (as do the two 3-globins); they receive a
combined weight of only slightly more than if a single a-globin
was used.

Initial gap penalties
Initially, two gap penalties are used: a gap opening penalty
(GOP), which gives the cost of opening a new gap of any length,
and a gap extension penalty (GEP), which gives the cost of every
item in a gap. Initial values can be set by the user from a menu.
The software then automatically attempts to choose appropriate
gap penalties for each sequence alignment, depending on the
following factors.

Figure 3. The variation in local gap opening penalty is plotted for a section of
alignment. The inital gap opening penalty is indicated by a dotted line. Two
hydrophilic stretches are underlined. The lowest penalties correspond to the ends
of the alignment, the hydrophilic stretches and the two positions with gaps. The
highest values are within 8 residues of the two gap positions. The rest of the
variation is caused by the residue specific gap penalties (12).

Dependence on the weight matrix. It has been shown (16,28) that
varying the gap penalties used with different weight matrices can
improve the accuracy of sequence alignments. Here, we use the
average score for two mismatched residues (i.e. off-diagonal
values in the matrix) as a scaling factor for the GOP.

Dependence on the similarity of the sequences. The per cent
identity of the two (groups of) sequences to be aligned is used
to increase the GOP for closely related sequences and decrease
it for more divergent sequences on a linear scale.

Dependence on the lengths ofthe sequences. The scores for both
true and false sequence alignments grow with the length of the
sequences. We use the logarithm of the length of the shorter
sequence to increase the GOP with sequence length. Using these
three modifications, the initial GOP calculated by the program is:

GOP - [GOP + log[min(N,M)]} * (average residue mismatch
score) * (per cent identity scaling factor)
where N, M are the lengths of the two sequences.

Dependence on the difference in the lengths of the sequences.
The GEP is modified depending on the difference between the
lengths of the two sequences to be aligned. If one sequence is
much shorter than the other, the GEP is increased to inhibit too
many long gaps in the shorter sequence. The initial GEP
calculated by the program is:

GEP - GEP * [1.0 + Ilog(N/M)I]
where N, M are the lengths of the two sequences.

Position-specific gap penalties
In most dynamic programming applications, the initial gap
opening and extension penalties are applied equally at every
position in the sequence, regardless of the location of a gap,
except for terminal gaps which are usually allowed at no cost.
In CLUSTAL W, before any pair of sequences or prealigned
groups of sequences are aligned, we generate a table of gap
opening penalties for every position in the two (sets of) sequences.
An example is shown in Figure 3. We manipulate the initial gap
opening penalty in a position-specific manner, in order to make
gaps more or less likely at different positions.

Nucleic Acids Research, 1994, Vol. 22, No. 22 4677

The local gap penalty modification rules are applied in a
hierarchical manner. The exact details of each rule are given
below. Firstly, if there is a gap at a position, the gap opening
and gap extension penalties are lowered; the other rules do not
apply. This makes gaps more likely at positions where there are
already gaps. If there is no gap at a position, then the gap opening
penalty is increased if the position is within 8 residues of an
existing gap. This discourages gaps that are too close together.
Finally, at any position within a run of hydrophilic residues, the
penalty is decreased. These runs usually indicate loop regions
in protein structures. If there is no run of hydrophilic residues,
the penalty is modified using a table of residue-specific gap
propensities (12). These propensities were derived by counting
the frequency of each residue at either end of gaps in alignments
of proteins of known structure. An illustration of the application
of these rules from one part of the globin example in Figure 1
is given in Figure 3.

Lowered gap penalties at existing gaps. If there are already gaps
at a position, then the GOP is reduced in proportion to the number
of sequences with a gap at this position and the GEP is lowered
by a half. The new gap opening penalty is calculated as:

GOP - GOP * 0.3 * (no. of sequences without a gap/no. of
sequences).

Increased gap penalties near existing gaps. If a position does
not have any gaps but is within 8 residues of an existing gap,
the GOP is increased by:

GOP - GOP * t2 + [(8 - distance from gap) * 2]/8j

Reduced gap penalties in hydrophilic stretches. Any run of 5
hydrophilic residues is considered to be a hydrophilic stretch.
The residues that are to be considered hydrophilic may be set
by the user but are conservatively set to D, E, G, K, N, Q, P,
R or S by default. If, at any position, there are no gaps and any
of the sequences has such a stretch, the GOP is reduced by one
third.

Residue-specific penalties. If there is no hydrophilic stretch and
the position does not contain any gaps, then the GOP is multiplied
by one of the 20 numbers in Table 1, depending on the residue.
If there is a mixture of residues at a position, the multiplication
factor is the average of all the contributions from each sequence.

Weight matrices
Two main series of weight matrices are offered to the user: the
DayhoffPAM series (3) and the BLOSUM series (4). The default
is the BLOSUM series. In each case, there is a choice of matrix
ranging from strict ones, useful for comparing very closely related
sequences to very 'soft' ones that are useful for comparing very
distantly related sequences. Depending on the distance between
the two sequences or groups of sequences to be compared, we
switch between 4 different matrices. The distances are measured
directly from the guide tree. The ranges of distances and tables
used with the PAM series of matrices are: 80-100% :PAM20,
60-80%:PAM60, 40-60%:PAM120, 0-40%:PAM350.
The range used with the BLOSUM series is: 80-100%:
BLOSUM80, 60-80% :BLOSUM62, 30-60% :BLOSUM45,

Divergent sequences
The most divergent sequences (most different on average from
all of the other sequences) are usually the most difficult to align
correctly. It is sometimes better to delay the incorporation of these
sequences until all of the more easily aligned sequences are
merged first. This may give a better chance of correctly placing
the gaps and matching weakly conserved positions against the
rest of the sequences. A choice is offered to set a cut-off (default
is 40% identity or less with any other sequence) that will delay
the alignment of the divergent sequences until all of the rest have
been aligned.

Software and algorithms
Dynamic programming
The most demanding part of the multiple alignment strategy, in
terms of computer processing and memory usage, is the alignment
of two (groups of) sequences at each step in the final progressive
alignment. To make it possible to align very long sequences (e.g.
dynein heavy chains at - 5,000 residues) in a reasonable amount
of memory, we use the memory efficient dynamic programming
algorithm of Myers and Miller (26). This sacrifices some
processing time but makes very large alignments practical in very
little memory. One disadvantage of this algorithm is that it does
not allow different gap opening and extension penalties at each
position. We have modified the algorithm so as to allow this and
the details are described in a separate paper (27).

Menus/file formats
Six different sequence input formats are detected automatically
and read by the program: EMBL/Swiss Prot, NBRF/PIR,
Pearson/FASTA (29), GCG/MSF (30), GDE (Steven Smith,
Harvard University Genome Center) and CLUSTAL format
alignments. The last three formats allow users to read in complete
alignments (e.g. for calculating phylogenetic trees or for addition
of new sequences to an existing alignment). Alignment output
may be requested in standard CLUSTAL format (self-explanatory
blocked alignments) or in formats compatible with the GDE,
PHYLIP (31) or GCG (30) packages. The program offers the
user the ability to calculate Neighbour-Joining phylogenetic trees
from existing alignments with options to correct for multiple hits
(32,33) and to estimate confidence levels using a bootstrap
resampling procedure (34). The trees may be output in the 'New
Hampshire' format that is compatible with the PHYLIP package
(31).

Alignment to an alignment
Profile alignment is used to align two existing alignments (either
of which may consist of just one sequence) or to add a series
of new sequences to an existing alignment. This is useful because
one may wish to build up a multiple alignment gradually,
choosing different parameters manually or correcting intermediate
errors as the alignment proceeds. Often, just a few sequences
cause misalignments in the progressive algorithm and these can
be removed from the process and then added at the end by profile
alignment. A second use is where one has a high quality reference
alignment and wishes to keep it fixed while adding new sequences
automatically.

Portability/availability
The full source code of the package is provided free to academic
users. The program will run on any machine with a full ANSI
conforming C compiler. It has been tested on the following0-30%:BLOSUM30.

4678 Nucleic Acids Research, 1994, Vol. 22, No. 22

hardware/software combinations: Decstation/Ultrix, Vax or
ALPHA/VMS, Silicon Graphics/IRIX. The source code and
documentation are available by E-mail from the EMBL file server
(send the words HELP and HELP SOFTWARE on two lines
to the internet address: Netserv@EMBL-Heidelberg.DE) or by
anonymous FTP from FTP.EMBL-Heidelberg.DE. Queries may
be addressed by E-mail to Des.Higgins@EBI.AC.UK or
Gibson@EMBL-Heidelberg.DE.

RESULTS AND DISCUSSION
Alignment of SH3 domains
The -60 residue SH3 domain was chosen to illustrate the
performance of CLUSTAL W, as there is a reference manual
alignment (23) and the fold is known (24). SH3 domains, with
a minimum similarity below 12% identity, are poorly aligned
by progressive alignment programs such as CLUSTAL V and
PILEUP: neither program can generate the correct blocks
corresponding to the secondary structure elements.

Figure 4 shows an alignment generated by CLUSTAL W of
the example set of SH3 domains. The alignment was generated
in two steps. After progressive alignment, five blocks were
produced, corresponding to structural elements, with gaps
inserted exclusively in the known loop regions. The fl-strands
in blocks 1, 4 and 5 were all correctly superposed. However,
four sequences in block 2 and one sequence in block 3 were
misaligned by 1-2 residues (underlined in Figure 4). A second
progressive alignment of the aligned sequences, including the
gaps, improved this alignment: A single misaligned sequence,
H P55, remains in block 2 (boxed in Figure 4), while block
3 is now completely aligned. This alignment corrects several
errors (e.g. P85A, P85B and FUS1) in the manual alignment (23).
The SH3 alignment illustrates several features of CLUSTAL
W usage. Firstly, in a practical application involving divergent
sequences, the initial progressive alignment is likely to be a good
but not perfect approximation to the correct alignment. The
alignment quality can be improved in a number of ways. If the
block structure of the alignment appears to be correct, realignment
of the alignment will usually improve most of the misaligned
blocks: the existing gaps allow the blocks to 'float' cheaply to
a locally optimal position without disturbing the rest of the
alignment. Remaining sequences which are doubtfully aligned
can then be individually tested by profile alignment to the
remainder: the misaligned H_P55 SH3 domain can be correctly
aligned by profile (with GOP c 8). The indel regions in the final
alignment can then be manually cleaned up: usually the exact
alignment in the loop regions is not determinable, and may have
no meaning in structural terms. It is then desirable to have a single
gap per structural loop. CLUSTAL W achieved this for two of
the four SH3 loop regions (Figure 4).

If the block structure of the alignment appears suspect, greater
intervention by the user may be required. The most divergent
sequences, especially if they have large insertions (which can
be discerned with the aid of dot matrix plots), should be left out
of the progressive alignment. If there are sets of closely related
sequences that are deeply diverged from other sets, these can
be separately aligned and then merged by profile alignment.
Incorrectly determined sequences, containing frameshifts, can
also confound regions of an alignment: these can be hard to detect
but sometimes they have been grouped within the excluded

Table 1. Pascarella and Argos residue specific gap modification factors

A 1.13 M 1.29
C 1.13 N 0.63
D 0.96 p 0.74
E 1.31 Q 1.07
F 1.20 R 0.72
G 0.61 S 0.76
H 1.00 T 0.89
I 1.32 V 1.25
K 0.96 Y 1.00
L 1.21 W 1.23

The values are normalised around a mean value of 1.0 for H. The lower the
value, the greater the chance of having an adjacent gap. These are derived from
the original table of relative frequencies of gaps adjacent to each residue (12)
by subtraction from 2.0.

individually compared to the alignment as having apparently
nonsense segments with respect to the other sequences.

Finding the best alignment
In cases where all of the sequences in a data set are very similar
(e.g. no pair less than 35% identical), CLUSTAL W will find
an alignment which is difficult to improve by eye. In this sense,
the alignment is optimal with regard to the alternative of manual
alignment. Mathematically, this is vague and can only be put on
a more systematic footing by finding an objective function (a
measure of multiple alignment quality) that exactly mirrors the
information used by an 'expert' to evaluate an alignment.
Nonetheless, if an alignment is impossible to improve by eye,
then the program has achieved a very useful result.

In more difficult cases, as more divergent sequences are
included, it becomes increasingly difficult to find good alignments
and to evaluate them. What we find with CLUSTAL W is that
the basic block-like structure of the alignment (corresponding to
the major secondary structure elements) is usually recovered, with
some of the most divergent sequences misaligned in small regions.
This is a very useful starting point for manual refinement, as
it helps define the major blocks of similarity. The problem
sequences can be removed from the analysis and realigned to
the rest of the sequences automatically or with different parameter
settings. An examination of the tree used to guide the alignment
will usually show which sequences will be most unreliably placed
(those that branch off closest to the root and/or those that align
to other single sequences at a very low level of sequence identity
rather than align to a group of prealigned sequences). Finally,
one can simply iterate the multiple alignment process by feeding
an output alignment back into CLUSTAL W and repeating the
multiple alignment process (using the same or different
parameters). The SH3 domain alignment in Figure 4 was derived
in this way by 2 passes using default parameters. In the second
pass, the local gap penalties are dominated by the placement of
the initial major gap positions. The alignment will either remain
unchanged or will converge rapidly (after 1 or 2 extra passes)
on a better solution. If the placement of the initial gaps is
approximately correct but some of the sequences are locally
misaligned, this works well.

Comparison with other methods
Recently, several papers have addressed the problem of position-
specific parameters for multiple alignment. In one case (35), local

divergent sequences: then they may be revealed when they are gap penalties are increased in a-helical and 0-strand regions when

Nucleic Acids Research, 1994, Vol. 22, No. 22 4679

ASV_vSRC ttfvalydyesrte----t41sfk---itgjr1qivnnt---------igdwwlahslttg---------qtgyipsnyvapsd
RSV_vSRC ttfvalydyeswte-----tdlsfk---kgirlqivnnt----------g4nl1ahslttg---------qtgyipsnyvapa4$
H_csRC1 ttfvalyt'esrte-----td'lsfk---kgerlqivnnt ---------e*gdwwlahslstg---------qtgyipsnyvapsd
Xl1cSRC1 ttfvalyzdyesrte-----tdlofk--- lrqivnnt---------e6g4ww1arslssg---------qtgyipsnyvaps~
H nSRC ttfvaly4yesrte----tklsfk---I..kg#rlqivnntrkvd------vrqgdww1ahslstg---------qtgyipsnyvaps4

Xl cSRC2 ttfvalydyeeorte-----td1sfr---kger1qivnnt---------sgdwlarslssg---------qtgyipenyvapst
ASV_vYES tvfvaly4tyeartt----dGlsfk---kglrfqiinnt -gwasagkgisyaa
C cYES tvfvalydyeartt----d4lsfk---.cg4Wrfqiinnt----------*g4wwearsiatg---------ktgyipsnyvapa4
HcYESl tifvalyd(yeartt-----edl.sfk---kg fiin-gdwwearsiatg---------kngyipsnyvapa

Xl cYES tVfValyttyeartt-----e41sfr---kg~rfgiinnt ----------eogdwwearsiatg---------ktgyipsnyvapad
Xl cFYN tlfvaly4yearte----d:dlsfq--- ~g~,kfqilnssa--e------gdwwearslttg---------gtgyipsnyvapv
H cFYN tlfvalyIayearte-----ddlafh---kgekfqilnss---------eog4wwearslttg---------etgyipsnyvapv
M_cFGR tifvalydyeartg----ddltft---tg4,kfhilnnt---------1ty4wwearslssg---------hrgyvpsnyvapv
H_cFGR tlfialyd4yearte----d4ltft--- q"kfhilnnt ---------og4nwearslseg---------ktgcipsnyvap4
Ha_STK tifv&ly4yearie ----e4lsfk--- ger1qiinta----------dgdwwyarslitn---------segyipatyvapek
*RHOK iivvaly4tyeaihh-----e4lsfq---.kg4qxuvvlees----------gewwkarslatr----------kegyipsnyvarv4q
H HCK tivvalydyeaihr----e4lsfq----kgdqinvvleea----------gewwkarslatk---------kegyipsnyvarvn
*HLYN divvalypydgihp-----ddlsfk---kg~kkvleeh----------gewwkakslltk---------kegfipsnyvakln
HBLK rfvvalfalyaa'vnd----- 4lqvl---kgklqvlrst ---------gawwlarslvtg---------regyvpsnfvapve

H_LSKT nlvialhsyepshd----gqd1gfe---kguMq1ri1eqs----------gewwkaqslttg---------qegfipfnfvakan
HILCK nlvialhsyepshd-----gdlgfe---tgqljerilIeqs----------gewwkaqsttg----------qegfipfnfvakan

FSV vABL nlfvalyafvasgd-----tlisit--kg:~klrvlgynh---------ngewceaqtkng----------qgvvpsnyitpvn
Din ABLI qlfvalydfqagge----ng1s1k---kg01qvrilsynk---------sgewceahssgn----------vgwvpsnyvtpln
C cTKL klvvalydyepthd-----gd1g1k---qgM'k1rv1ees----------gewwraqslttg----------qegliphnfvaxnvn

Ce_sem5/1 mneavael4fqagsp-----delsfk---rgn__t1kv1nk4d--------efhwykaeld--g---------negfipsnyirmnte
ce_sem5/2 kfvqaifdfnpqes----g:*1afk---tgdvit1in---------kd4pnnwegq1n- -n---------rrgifpsnyvcpyn

Din_SRCl rvvvs1y4yksr e-----sdlsfmn---kgdrmnevi4dt----------sdnwrvvn1ttr---------gegliplnfvaeer
ASV GAGCRK eyvtralfdfkgn4d g1pk--gilkirlk-ewnem5--rzivyec

C Spca elvialydygeksp----revtink---.kg4i1t11n--------k------- kv]evn--d---------rqgfvpaayvkklq
DmnSpca ecvvalydyteksp----revsmnk--- cgdvltlln---------snnkdwwkvevn--d---------rqgfvpaayikkia%
DinSpcb phvkslfpfgqmm---gtrn11kskt---------nddwwcvrkdn-g---------vegfvpanyvreve;

H_PLC rtvkalyaykakrs----delfc---rga1ihnvs---------kepggwwkgdygt-r---------iqqyfpsnyvedis
R_PLCII cavkalfdykaqre-----d*ltft---ksaiiqnve-----------kdggwwrgdygg-k---------kqlwfpsnyveemni
E PLCII cavkalfdykaqre-----deltft---ksaiiqnve----------qeggwwrgdygg-k---------kqlwfpsnyveeumv
H-PLCI cavkalfdykaqre----d*ltfi---ksaiignve---------kqeggwwrgdygg-k---------kqlwfpsnyveeinv

H_RASA/GAp rrvrailpytkvpd----±d Ia---kg4mfivhn---------ele:dgwmwvtnlrtd---------eqgliveidlveevg
Ac M4ILE pqvkalydlydaqtg----diltfk---eg4tiivhq---------kdPagwwege1n--g---------krgwvpanyvqdi
Ac-MILC eqaralydfaaenp----de1tfn---egavvtvin---------ksnpd1wwegeln--g---------grgvfpasyvelip

H_HS1 isavlydyqgegs-----d:elafd---pdavitdie----------v4egvwvrgrch- -g---------hfglfpanyvklle
H VAV gtakarydfcar4r----ees01sk---egdjiiki1nkk---------gqqgwwrgeiyg----------rvgwfpanyveedy

Din_SRC2 klvvalyi1gkaie;g-----gd1svge--kn_aeyevidds---------gehwwkvkdialg----------nvgyipsnyvqaea
R-CSK teciakynfhgtae-----qdlpfc---kg4lvltiv-avtk---------dpnwykaknikvg----------regiipanyvgkre

H-NCK/l vvvnakfayvaqqe------1dik---Icner1w1lds----------kswwrvrns-nmn---------ktgfvpsnyverkn
H_NCK/2 inpayvkfnymnaere-----dels ij---ozgtkgaizmIka---------dgwwrgsyn--g---------qvgwfpsnyvteeg
H NCK/3 hvvqalypfsssnd----ee1nfe---k-g_4vmndviekp--------enalpewwkcrkin-g----------vglvpknyvtvznq

H_NCF1/l qtyraianyektsg----sBeMals---tg4vvevveks----------sgwwfcqznk--a---------krgwipasf1ep,l4
H-NCF1/2 epyvaikaytaveg-----devsll---egeavevihk-l--------1dgwwvirkd--d---------vtgyfpenmylqksg
H_NCF2/1 eahrvlfgfvpetk-----eelqvnu---pgnivfvlkkg---------ndnwatvmfn--g---------qkglvpcnylepve
H_NCF2/2 sqvealfsyeatgp-----ed1efq---eg4ii1v1skvn---------eewlegeckg----------kvgifpkvfvedca

Y-ABPI pwataey4lydaaed-----ne1tfv---en4eqkiinie---------fv4jddlgelkd-g---------skglfpsniyvslgn
Y_EEMl/l kvikaky7syqaqts----ke1sfmn---egeWffyvsgd ---------e~kdwykasnp'stg---------kegvvpktyfevft4
YBEEMl/2 lyaivlydfkaeka-----deltty---vg466lficahh---------ncewfiakpigrlg---------gpglvpvgfvsiid
C PBO/85 itaialy4yqaagd-----deisfd---pd4iitnie---------mi4dgwwrgvck--g---------ryglfpanyvelrg-

YCDC25 g'ivvaay4fnypikk-dss-sq1lsvq---ggtiyilnkn---------esagwwdglvidasngkv-------nrgwfpqnfgrplr
Y_SCD25 dvvectyqyftksr-----nklslr---vgdliyvltkg---------sngwwdgv1irhsannn=ns1ail----drgwfppsftrsil
y-Fus1 ktytviqdyeprlt-----diiiris---l1g*kvkilath---------tgcvknqsivvakrlegvpdlea
OC_CACb favrtnvgynpspgd~vpvmilg,aJ±fr---pkdflhikeky---------tndwwiglvkctkegibv-----------nedrgfipspgvcldl

DinDL lyva1lf4ydpnrdd-glp-sr1pf--g41i1hvtnas---------cdd-ewwqarrvlgdneieqgvsrwr
H P55 mnfmraqfd$ydpkkdn-lip-c a 1k-f gdiiqiinkI---------dsnwwqgrvegsske--------saglipspelqewr
E P85A fgyralypfrrerp-----edlell---pg4vlvvsraalqalgvaigniirc-pqevgwmpglnertr---------qrgdfpgtyveflg
E P85B ycqyralydykkere-----ediTlh---lgdiltvnkgslvalgfsdgq*aJ&-peiiigwlngynettg---------ergdfpgtyveyig
H_P8BE ycyralydykkere-----edidlh---lg4iltvnkgslvalgfsdgp4a±&.-pe4igwlngynettg---------ergdfpgtyveyig
Sp_STEE fqttaisdyenssn------ kt---ag4tiiviev1----- ""-4dgwcdgics--e---------krgwfptscidssk

H Atk kkvvalydymupina----nalqlr---kgeyfilees---------nl1pwwrardkn-g---------q-egyipsnyvteae

Figure 4. CLUSTAL W alignment of a set of SH3 domains taken from Musacchio et al. (23). Secondary structure assignments for the solved Spectrin (24) and
Fyn (39) domains are according to DSSP (40). The alignment was generated in two steps using default parameters. After full multiple alignment, the aligned sequences
were realigned. Segments which were correctly aligned in the second pass are underlined. The single misaligned segment in H-P55 and the misaligned residue
in H_NCKI2 are boxed. The sequences are coloured to illustrate significant features. All G (orange) and P (yellow) are coloured. Other residues matching a frequent
occurrence of a property in a column are coloured: hydrophobic = blue; hydrophobic tendency = light blue; basic = red; acidic = purple; hydrophilic = green;
unconserved = white. The alignment figure was prepared with the GDE sequence editor (S.Smith, Harvard University) and COLORMASK (J.Thompson, EMBL).

the 3-D structures of one or more of the sequences are known. number of available sequences and their evolutionary
In a second case (36), a hidden Markov model was used to relationships. It will also depend on the decision making process
estimate position-specific gap penalties and residue substitution during multiple aligrnment (e.g. when to change weight matrix)
weight matrices when large numbers of examples of a protein and the accuracy and appropriateness of our parameterisation.
domain were known. With CLUSTAL W, we attempt to derive In the long term, this can only be evaluated by exhaustive testing
the same information purely from the set of sequences to be of sets of sequences where the correct alignment (or parts of it)
aligned. Therefore, we can apply the method to any set of are known from structural information. What is clear, however,
sequences. The success of this approach will depend on the is that the modifications described here significantly improve the

4680 Nucleic Acids Research, 1994, Vol. 22, No. 22

sensitivity of the progressive multiple alignment approach. This
is achieved with almost no sacrifice in speed and efficiency.
There are several areas where further improvements in

sensitivity and accuracy can be made. Firstly, the residue weight
matrices and gap settings can be made more accurate as more
and more data accumulate, while matrices for specific sequence
types can be derived [e.g. for transmembrane regions (37)].
Secondly, stochastic or iterative optimisation methods can be used
to refine initial alignments (7,9,10). CLUSTALW could be run
with several sets of starting parameters and in each case, the
alignments refined according to an objective function. The search
for a good objective function that takes into account the sequence-
and position-specific information used in CLUSTAL W is a key
area of research. Finally, the average number of examples of
each protein domain or family is growing steadily. It is not only
important that programs can cope with the large volumes of data
that are being generated, they should be able to exploit the new
information to make the alignments more and more accurate.
Globally optimal alignments (according to an objective function)
may not always be possible, but the problem may be avoided
if sufficiently large volumes of data become available. CLUSTAL
W is a step in this direction.

ACKNOWLEDGEMENTS
Numerous people have offered advice and suggestions for
improvements to earlier versions of the CLUSTAL programs.
D.H. wishes to apologise to all of the irate CLUSTAL V users
who had to live with the bugs and lack of facilities for getting
trees in the New Hampshire format. We wish to specifically thank
Jeroen Coppieters who suggested using a series of weight matrices
and Steven Henikoff for advice on using the BLOSUM matrices.
We are grateful to Rein Aasland, Peer Bork, Ariel Blocker and
Bertrand Seraphin for providing challenging alignment problems.
T.G. and J.T. thank Kevin Leonard for support and encourage-
ment. Finally, we thank all of the people who have been involved
with various CLUSTAL programs over the years, namely Paul
Sharp, Rainer Fuchs and Alan Bleasby.

16. Luithy, R., Xenarios, I. and Bucher, P. (1994) Protein Sci. 3, 139-146.
17. Higgins, D.G. and Sharp, P.M. (1988) Gene 73, 237-244.
18. Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5, 151-153.
19. Higgins, D.G., Bleasby, A.J. and Fuchs, R. (1992) CABIOS 8, 189-191.
20. Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy. W.H.

Freeman, San Francisco.
21. Saitou, N. and Nei, M. (1987) Mol. Biol. Evol. 4, 406-425.
22. Bashford, D., Chothia, C. and Lesk, A.M. (1987) J. Mol. Biol. 196,

199-216.
23. Musacchio, A., Gibson, T., Lehto, V.-P. and Saraste, M. (1992). FEBS

Lett. 307, 55-61.
24. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. and Saraste, M. (1992).

Nature, 359, 851 -855.
25. Bashford, D., Chothia, C. and Lesk, A.M. (1987). J. Mol. Biol. 196,

199-216.
26. Myers, E.W. and Miller, W. (1988). CABIOS 4, 11-17.
27. Thompson, J.D. (1994). CABIOS submitted for publication.
28. Smith, T.F., Waterman, M.S. and Fitch, W.M. (1981) J. Mol. Evol. 18,

38-46.
29. Pearson, W.R. and Lipman, D.J. (1988) Proc. Natl. Acad. Sci. USA. 85,

2444-2448.
30. Devereux, J., Haeberli, P. and Smithies, 0. (1984) Nucleic Acids Res. 12,

387-395.
31. Felsenstein, J. (1989) Cladistics 5, 164-166.
32. Kimura, M. (1980) J. Mol. Evol. 16, 111-120.
33. Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge

University Press, Cambridge.
34. Felsenstein, J. (1985) Evolution 39, 783-791.
35. Smith, R.F. and Smith, T.F. (1992) Protein Engng 5, 35-41.
36. Krogh, A., Brown, M., Mian, S., Sjolander, K. and Haussler, D. (1994)

J. Mol. Biol. 235-1501-1531.
37. Jones, D.T., Taylor, W.R. and Thornton, J.M. (1994) FEBS Lett. 339,

269-275.
38. Bairoch, A. and Bockmann, B. (1992) Nucleic Acids Res. 20, 2019-2022.
39. Noble, M.E.M., Musacchio, A., Saraste, M., Courtneidge, S.A. and

Wierenga, R.K. (1993) EMBO J. 12, 2617-2624.
40. Kabsch, W. and Sander, C. (1983) Biopolymers 22, 2577-2637.

REFERENCES
1. Feng, D.-F. and Doolittle, R.F. (1987) J. Mol. Evol. 25, 351-360.
2. Needleman, S.B. and Wunsch, C.D. (1970) J. Mol. Biol. 48, 443-453.
3. Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. (1978) In Atlas of Protein

Sequence and Structure, vol. 5, suppl. 3 (Dayhoff, M.O., ed.), pp 345-352.
NBRF, Washington.

4. Henikoff, S. and Henikoff, J.G. (1992) Proc. Natl. Acad. Sci. USA 89,
10915-10919.

5. Lipman, D.J., Altschul, S.F. and Kececioglu, J.D. (1989) Proc. Nad. Acad.
Sci. USA 86, 4412-4415.

6. Barton, G.J. and Stemnberg, M.J.E. (1987) J. Mol. Biol. 198, 327-337.
7. Gotoh, 0. (1993) CABIOS 9, 361-370.
8. Altschul, S.F. (1989) J. Theor. Biol. 138, 297-309.
9. Lukashin, A.V., Engelbrecht, J. and Brunak, S. (1992) Nucleic Acids Res.

20, 2511-2516.
10. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F.

and Wooton, J.C. (1993) Science 262, 208-214.
11. Vingron, M. and Waterman, M.S. (1993) J. Mol. Biol. 234, 1-12.
12. Pascarella, S. and Argos, P. (1992) J. Mol. Biol. 224, 461-471.
13. Collins, J.F. and Coulson, A.F.W. (1987) In Nucleic Acid and Protein

Sequence Analysis, A Practical Approach (Bishop, M.J. and Rawlings, C.J.,
eds), chapter 13, pp. 323-358.

14. Vingron, M. and Sibbald, P.R. (1993) Proc. Natl. Acad. Sci. USA 90,
8777-8781.

15. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CABIOS 10,
19-29.

