ATTENTION: 0031-408 8 tasks allocated by LoadLeveler, continuing...
Command line Training Set First Motif Summary of Motifs Termination Explanation


Search sequence databases with these motifs using
MAST.
Submit these motifs to BLOCKS multiple alignment processor.
Build and use a motif-based hidden Markov model (HMM) using Meta-MEME.


MEME - Motif discovery tool

MEME version 3.0 (Release date: 2001/03/05 14:24:28)

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.sdsc.edu.

This file may be used as input to the MAST algorithm for searching sequence databases for matches to groups of motifs. MAST is available for interactive use and downloading at http://meme.sdsc.edu.


REFERENCE

If you use this program in your research, please cite:

Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994.


TRAINING SET

DATAFILE= pasted sequences
ALPHABET= ACGT
Sequence name            Weight Length  Sequence name            Weight Length  
-------------            ------ ------  -------------            ------ ------  
Sply-2R                  1.0000   2000  CG18445-2R               1.0000   2000  
CG7816-3R                1.0000   2000  CG15099-2R               1.0000   2000  
Aats-thr-2L              1.0000   2000  GstE1-2R                 1.0000   2000  
Jra-2R                   1.0000   2000  Gfat2-3R                 1.0000   2000  
CG12505-2R               1.0000   2000  NTPase-2L                1.0000   2000  
kraken-2L                1.0000   2000  CG12264-2L               1.0000   2000  
CG4769-3L                1.0000   2000  Cyp6a20-2R               1.0000   2000  
Mlc2-3R                  1.0000   2000  BcDNA:LD32788-3R         1.0000   2000  
JhI-26-2R                1.0000   2000  Jafrac1-X                1.0000   2000  
CG18522-3R               1.0000   2000  Men-3R                   1.0000   2000  
Trxr-1-X                 1.0000   2000  CG5134-2R                1.0000   2000  


COMMAND LINE SUMMARY

This information can also be useful in the event you wish to report a
problem with the MEME software.

command: meme meme.109666.data -dna -mod zoops -nmotifs 1 -minw 6 -maxw 50 -evt 10000 -time 7200 -maxsize 60000 -nostatus -maxiter 20 

model:  mod=         zoops    nmotifs=         1    evt=         10000
object function=  E-value of product of p-values
width:  minw=            6    maxw=           50    minic=        0.00
width:  wg=             11    ws=              1    endgaps=       yes
nsites: minsites=        2    maxsites=       22    wnsites=       0.8
theta:  prob=            1    spmap=         uni    spfuzz=        0.5
em:     prior=   dirichlet    b=            0.01    maxiter=        20
        distance=    1e-05
data:   n=           44000    N=              22
strands: +
sample: seed=            0    seqfrac=         1
Letter frequencies in dataset:
A 0.282 C 0.219 G 0.214 T 0.285 
Background letter frequencies (from dataset with add-one prior applied):
A 0.282 C 0.219 G 0.214 T 0.285 


P N
MOTIF 1
    width = 50     sites = 21     llr = 414     E-value = 8.0e-018

SimplifiedA243857151:5474678749483574154418966332522544726343
pos.-specificC::1:2:31:::11:11::3:::12:1::::31:::2::::1::1:11::1
probabilityG:12:2111::1::2:1:1:1:::::1:1:12:::::2:133::311::::
matrixT754111529a351431223:625223946441144547344452252766
.
bits 2.2
2.0
1.8
1.6 
Information 1.3 
content 1.1       
(28.4 bits)0.9               
0.7                     
0.4                                 
0.2                                              
0.0
.
Multilevel TTTAAATATTATAAAAAAAATATAAATATATAAAATTTATTATAATATTT
consensus AAACTTATTCATATTTTATCTTAAATGGTAGATAAA
sequence TCGA
.
NAME   START P-VALUE    SITES
 
kraken-2L4494.03e-16 TTATCGAAATTTAAAACTTTTTAAAAAACATATTACTATTTAAAATGTTGGGAAATATTTATTGAATGCA
CG18445-2R12221.82e-13 CTTCACAAAAAATACATTTTATTTAAAAAAAATAAATTTGTAAAATGTAATATAAGAATTTCCTAGGTAT
Aats-thr-2L17061.82e-12 GATTTAAGTCAAGAAGTATTAAAGAAAAAATATATATATTTAATTTGTTGGAAGGTCAATTGTTGAAACC
GstE1-2R14463.30e-12 AGTGTTTCTATGCAAACATTTTCATATAAATATAATTATAAAATTATGAGTTTAATATTATTACTTCTGT
Men-3R17695.24e-12 CCCATTTTTGTATAGTCCTTTTGTAAAGCATAAAAATTTACAAATTATAGTTAAATAAAACAGCAGATTA
CG4769-3L13221.28e-11 TATATTTTTTTTTAAATAATATATATATAAAAACAATTAGCAAAAATAAAAATAAAATTATAATATTGAC
Sply-2R5926.77e-11 CAAATGCACATAATCACATTATTATATACATATTATTTATTCAAATTTGTAATTGTATTTTTTGAATATT
Cyp6a20-2R15761.62e-10 TTAATATCTGCTAAAATATTAAAATAAATATTCCATTAAAAAAAATATTTCACGAAAAAAGAAATATTTG
CG7816-3R16961.62e-10 TATGTTTATATTCCAATATTAAATCGAAAATATATATATACAAAATTTTTAATTTCCTACATCTCGCTTT
Gfat2-3R18102.35e-10 AACATCTTTGTATATAGCTTTAAAAGTTTATTATATTATTCAATACATAGTAAAAAAATAATTTATTAAA
NTPase-2L732.83e-10 AAAGTGAGACTAGAGATGTTATAGCAAACATTACATTGTACAATTATATAGATCATTTAACCAAAACATT
Mlc2-3R8504.84e-10 AATTTGCAGAATGAATATTTCTAAAAAAAATAGATGTAAACTATATGAATAATAATATTTTGTAACACTT
Jafrac1-X9108.14e-10 CAAGTTGTGTTTATGAAAATAAAGTCAAAACTTATTTGTTTAAAACGTTTATTGATATTTATTGATATAT
BcDNA:LD32788-3R16801.35e-09 GTATATCAAATATGAACCTTAAAGATAAAATATATTTAAATATTAACTAGTTAGTCTTTTTACAAAAATT
Jra-2R17781.87e-09 CAAAATATTATTAATGTATTTACATAAACGAACAAATATATATATTTAAACTTGATGTATATGCTACAGT
JhI-26-2R17214.09e-09 CAAAGGAATCATTAAACTTTGCACACAATAAACAAAAAAAAAAAACTAATTAAAACTAATAAATAGCGTA
CG5134-2R914.76e-09 CACAGATCAATATACAAATCAAATTGAATGAAATACTTATGCAAAAATAGTTTATATTTACCTTTAAAAT
CG15099-2R11424.76e-09 TGCTTAGCAGTTAAATTATTTTTAAAATTAAATGAAATTTGCAGTTTTGTTTTGAAATTCGCCAACACTT
CG12264-2L14322.12e-08 CATGTCGGCTTTGAGATATTGCCTAAAATAATTAAGTTATTAGTTCATCTGCATAGTTTTAATATCAATG
CG18522-3R15995.56e-08 TGAAGAATCGTTCTCCTGTTATATAATTCCTAATAGAATTGTATACATATGTACATATATGTTTTGAAGA
Trxr-1-X11031.60e-07 AGTACTTAAAAGTAAGGTATTAATTAAGCAAAACGCTTTCGAAATATTTCGAATTTATTTTGAAATATTA


Motif 1 block diagrams

NameLowest
p-value
   Motifs
kraken-2L 4e-16

1
CG18445-2R 1.8e-13

1
Aats-thr-2L 1.8e-12

1
GstE1-2R 3.3e-12

1
Men-3R 5.2e-12

1
CG4769-3L 1.3e-11

1
Sply-2R 6.8e-11

1
Cyp6a20-2R 1.6e-10

1
CG7816-3R 1.6e-10

1
Gfat2-3R 2.4e-10

1
NTPase-2L 2.8e-10

1
Mlc2-3R 4.8e-10

1
Jafrac1-X 8.1e-10

1
BcDNA:LD32788-3R 1.3e-09

1
Jra-2R 1.9e-09

1
JhI-26-2R 4.1e-09

1
CG5134-2R 4.8e-09

1
CG15099-2R 4.8e-09

1
CG12264-2L 2.1e-08

1
CG18522-3R 5.6e-08

1
Trxr-1-X 1.6e-07

1
SCALE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
1 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975


Motif 1 in BLOCKS format


to BLOCKS multiple alignment processor.


Motif 1 position-specific scoring matrix


Motif 1 position-specific probability matrix





Time 69.76 secs.


P N
SUMMARY OF MOTIFS


Combined block diagrams: non-overlapping sites with p-value < 0.0001

NameCombined
p-value
   Motifs
Sply-2R 1.32e-07

1
1
1
CG18445-2R 3.54e-10

1
1
1
1
1
1
CG7816-3R 3.16e-07

1
1
CG15099-2R 9.29e-06

1
1
Aats-thr-2L 3.55e-09

1
GstE1-2R 6.43e-09

1
1
1
1
Jra-2R 3.64e-06

1
1
1
1
1
Gfat2-3R 4.59e-07

1
1
CG12505-2R 9.23e-01

NTPase-2L 5.51e-07

1
1
kraken-2L 7.86e-13

1
CG12264-2L 4.14e-05

1
1
CG4769-3L 2.50e-08

1
1
1
1
Cyp6a20-2R 3.16e-07

1
1
Mlc2-3R 9.44e-07

1
1
BcDNA:LD32788-3R 2.63e-06

1
1
1
1
1
JhI-26-2R 7.98e-06

1
1
1
Jafrac1-X 1.59e-06

1
CG18522-3R 1.09e-04

1
Men-3R 1.02e-08

1
1
1
1
1
Trxr-1-X 3.11e-04

1
CG5134-2R 9.29e-06

1
SCALE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
1 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975

Motif summary in machine readable format.



Stopped because nmotifs = 1 reached.

CPU: tf076i


EXPLANATION OF MEME RESULTS

The MEME results consist of:

MOTIFS

For each motif that it discovers in the training set, MEME prints the following information:


Go to top